login
A157879
Expansion of 120*x^2 / (-x^3+899*x^2-899*x+1).
5
0, 120, 107880, 96876240, 86994755760, 78121193796360, 70152745034375640, 62997086919675528480, 56571313901123590199520, 50800976886122064323640600, 45619220672423712639039059400, 40966009362859607827792751700720, 36787430788627255405645251988187280
OFFSET
1,2
COMMENTS
This sequence is part of a solution of a more general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157879 is the c(n) sequence for A=7.
FORMULA
G.f.: 120*x^2/(-x^3+899*x^2-899*x+1).
c(1) = 0, c(2) = 120, c(3) = 899*c(2), c(n) = 899 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((449+120*sqrt(14))^(-n)*(-1+(449+120*sqrt(14))^n)*(15+4*sqrt(14)+(-15+4*sqrt(14))*(449+120*sqrt(14))^n))/224. - Colin Barker, Jul 25 2016
MATHEMATICA
CoefficientList[Series[120x^2/(-x^3+899x^2-899x+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{899, -899, 1}, {0, 0, 120}, 30] (* Harvey P. Dale, Jan 14 2014 *)
PROG
(PARI) concat(0, Vec(120*x^2/(-x^3+899*x^2-899*x+1)+O(x^20))) \\ Charles R Greathouse IV, Sep 25 2012
(PARI) a(n) = round(-((449+120*sqrt(14))^(-n)*(-1+(449+120*sqrt(14))^n)*(15+4*sqrt(14)+(-15+4*sqrt(14))*(449+120*sqrt(14))^n))/224) \\ Colin Barker, Jul 25 2016
CROSSREFS
7*A157879(n)+1 = A157877(n)^2.
8*A157879(n)+1 = A157878(n)^2.
Cf. A245031.
Sequence in context: A184887 A279579 A159735 * A008978 A077692 A322917
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 08 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved