OFFSET
1,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..300
Index entries for linear recurrences with constant coefficients, signature (899,-899,1).
FORMULA
G.f.: 120*x^2/(-x^3+899*x^2-899*x+1).
c(1) = 0, c(2) = 120, c(3) = 899*c(2), c(n) = 899 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((449+120*sqrt(14))^(-n)*(-1+(449+120*sqrt(14))^n)*(15+4*sqrt(14)+(-15+4*sqrt(14))*(449+120*sqrt(14))^n))/224. - Colin Barker, Jul 25 2016
MATHEMATICA
CoefficientList[Series[120x^2/(-x^3+899x^2-899x+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{899, -899, 1}, {0, 0, 120}, 30] (* Harvey P. Dale, Jan 14 2014 *)
PROG
(PARI) concat(0, Vec(120*x^2/(-x^3+899*x^2-899*x+1)+O(x^20))) \\ Charles R Greathouse IV, Sep 25 2012
(PARI) a(n) = round(-((449+120*sqrt(14))^(-n)*(-1+(449+120*sqrt(14))^n)*(15+4*sqrt(14)+(-15+4*sqrt(14))*(449+120*sqrt(14))^n))/224) \\ Colin Barker, Jul 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 08 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved