login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001460
a(n) = (5*n)!/((2*n)!*(n!)^3).
4
1, 60, 18900, 8408400, 4364860500, 2473653742560, 1483630051503600, 925833064837824000, 594927307937311420500, 391004487919622186610000, 261614105944603801295306400, 177601637048592673099585584000, 122027661025630720013771117910000
OFFSET
0,2
FORMULA
a(n) = A008978(n)/A000984(n). - Zerinvary Lajos, Jun 28 2007
From Gheorghe Coserea, Jul 18 2016, (Start):
a(n) = [(xyzw)^(3n)] 1/(1-(w*x*y+w*z+x*z+y*z)).
a(n) ~ sqrt(5)/(4*Pi^(3/2)) * n^(-3/2) * (3125/4)^n.
0 = (-4*x^3+3125*x^6)*y'''' + (-18*x^2+37500*x^5)*y''' + (-10*x+117500*x^4)*y'' + (2+95000*x^3)*y' + (9720*x^2)*y, where y(x) = A(x^3).
From Peter Bala, Dec 30 2019: (Start)
a(n) = binomial(3*n,n)*binomial(4*n,n)*binomial(5*n,n).
a(n) = ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ).
a(n) = [x^n]( F(x)^(60*n) ), where [x^n] is the coefficient extraction operator and where F(x) = 1 + x + 98*x^2 + 23861*x^3 + 7987534*x^4 + 3169655645*x^5 + 1398711076599*x^6 + ... appears to have integer coefficients. Cf. A008978. (End)
From Peter Bala, Feb 16 2020: (Start)
Congruences: a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(5*n). (End)
a(n) = a(n-1)*5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/(2*n^3*(2*n - 1)). - Neven Sajko, Jul 22 2023
MAPLE
f := n->(5*n)!/((2*n)!*(n!)^3);
seq((5*n)!/(n!)^5/binomial(2*n, n), n=0..15); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Table[(5 n)!/((2 n)! (n!)^3), {n, 0, 15}] (* or *)
Table[(5 n)!/(n!)^5/Binomial[2 n, n], {n, 0, 15}] (* Michael De Vlieger, Jul 18 2016 *)
PROG
(PARI) a(n) = (5*n)!/((2*n)!*n!^3); \\ Gheorghe Coserea, Jul 18 2016
(Magma) [Factorial(5*n)/(Factorial(2*n)*Factorial(n)^3):n in [0..15]]; // Marius A. Burtea, Feb 17 2020
(SageMath) f=factorial; [f(5*n)/(f(2*n)*f(n)^3) for n in range(16)] # G. C. Greubel, Sep 03 2023
CROSSREFS
Sequence in context: A009564 A269762 A291912 * A003794 A275051 A068295
KEYWORD
nonn
STATUS
approved