login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291912
Number of 6-cycles in the n X n rook complement graph.
3
0, 0, 60, 18336, 840800, 14629200, 143939460, 971877760, 5018582016, 21193207200, 76518984300, 243664127520, 699965254560, 1844973808496, 4520720267700, 10403885452800, 22674321863680, 47112768624960, 93845538165276, 180039346960800, 333959821087200, 600947653207440
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Rook Complement Graph
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
a(n) = (-2 + n)*(-1 + n)^2*n^2*(-52 + 12*n + 76*n^2 - 63*n^3 - 2*n^4 + 20*n^5 - 8*n^6 + n^7)/12.
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13).
G.f.: (4 x^3 (-15 - 4389 x - 151778 x^2 - 1277962 x^3 - 3535266 x^4 - 3576650 x^5 - 1293586 x^6 - 137682 x^7 - 1883 x^8 + 11 x^9))/(-1 + x)^13.
MATHEMATICA
Table[(-2 + n) (-1 + n)^2 n^2 (-52 + 12 n + 76 n^2 - 63 n^3 - 2 n^4 + 20 n^5 - 8 n^6 + n^7)/12, {n, 20}]
LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {0, 0, 60, 18336, 840800, 14629200, 143939460, 971877760, 5018582016, 21193207200, 76518984300, 243664127520, 699965254560}, 20]
CoefficientList[Series[(4 x^2 (-15 - 4389 x - 151778 x^2 - 1277962 x^3 - 3535266 x^4 - 3576650 x^5 - 1293586 x^6 - 137682 x^7 - 1883 x^8 + 11 x^9))/(-1 + x)^13, {x, 0, 20}], x]
CROSSREFS
Cf. A179058 (3-cycles), A291910 (4-cycles), A291911 (5-cycles).
Sequence in context: A113424 A009564 A269762 * A001460 A003794 A275051
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Sep 05 2017
STATUS
approved