|
|
A113424
|
|
a(n) = (6n)!/((3n)!(2n)!n!).
|
|
10
|
|
|
1, 60, 13860, 4084080, 1338557220, 465817912560, 168470811709200, 62588625639883200, 23717177328413240100, 9124964373613212524400, 3553261127084984957001360, 1397224499394244497967972800, 553883078634868423069470550800, 221068174083308549543680044926400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Appears in Ramanujan's theory of elliptic functions of signature 6.
The family of elliptic curves "x=2*H=p^2+q^2-q^3, 0<x<4/27" generates these a_n as the coefficients of the period-energy function "T(x)=2*Pi*2F1(1/6,5/6;1;(27/4)*x)". Set y=(27/4)*x, the Weierstrass parameters of this family are g2=(1/12), g3=(1/216)(1-2*y), j=432/(y-y^2). Our current statistical estimates suggest that about 500000 of Q-curves in LMFDB belong to this family. - Bradley Klee, Feb 25 2018
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..250
J. Cremona, Elliptic Curves over Q, LMFDB 2017.
Alin Bostan, Armin Straub, and Sergey Yurkevich, On the representability of sequences as constant terms, arXiv:2212.10116 [math.NT], 2022.
H. J. Brothers, Pascal's Prism: Supplementary Material
B. Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.
B. Klee, On LMFDB period data, LMFDB-support mailing list, 2018.
B. Klee, Weierstrass Solution of Cubic Anharmonic Oscillation, Wolfram Demonstrations Project, 2018.
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
S. Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.
L. C. Shen, A note on Ramanujan’s identities involving the hypergeometric function 2F1(1/6,5/6;1;z), The Ramanujan Journal, 30.2 (2013), 211-222.
|
|
FORMULA
|
G.f.: hypergeometric2F1(1/6, 5/6; 1; 432 * x).
a(n) ~ 432^n/(2*Pi*n). - Ilya Gutkovskiy, Oct 13 2016
a(n) = A005809(n)*A066802(n). - Bradley Klee, Feb 25 2018
0 = a(n)*(-267483013447680*a(n+2) +25577192448000*a(n+3) -204669037440*a(n+4) +372142500*a(n+5)) +a(n+1)*(+408751349760*a(n+2) -57870650880*a(n+3) +546809652*a(n+4) -1088188*a(n+5)) +a(n+2)*(-17884800*a(n+2) +21466920*a(n+3) - 295844*a(n+4) +693*a(n+5)) for all n in Z. - Michael Somos, May 16 2018
From Peter Bala, Feb 28 2020: (Start)
a(n) = C(6*n,2*n)*C(4*n,n).
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k (apply Mestrovic, equation 39).
(-1)^n*a(n) = [x^(2*n)*y^(2*n)] ( (1 + x + y)*(1 - x + y) )^(4*n).
a(n) = [x^n] ( F(x) )^(60*n), where F(x) = 1 + x + 56*x^2 + 7355*x^3 + 1290319*x^4 + 264117464*x^5 + 59508459679*x^6 + ... appears to have integer coefficients. We conjecture that for k >= 1 the sequence b_k(n) := [x^n] F(x)^(k*n) satisfies the above supercongruences for primes p >= 7. (End)
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..2*n} 4*n*(4*n+k-1)!/(k!*n!*(3*n)!) = (6*n)!/((3*n)!*(2*n)!*n!);
Sum_{k = 0..3*n} 3*n*(3*n+k-1)!/(k!*n!*(2*n)!) = (6*n)!/((3*n)!(2*n)!*n!).
Cf. A001451. (End)
|
|
EXAMPLE
|
G.f. = 1 + 60*x + 13860*x^2 + 4084080*x^3 + 1338557220*x^4 + ... - Michael Somos, Dec 02 2018
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 5/6, 1, 432 x], {x, 0, n}];
Table[Multinomial[n, 2 n, 3 n], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 12 2016 *)
a[ n_] := Multinomial[n, 2 n, 3 n]; (* Michael Somos, Dec 02 2018 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, (6*n)! / ((3*n)! * (2*n)! * n!))};
(GAP) List([0..15], n->Factorial(6*n)/(Factorial(3*n)*Factorial(2*n)*Factorial(n))); # Muniru A Asiru, Apr 08 2018
|
|
CROSSREFS
|
Elliptic Integrals: A002894, A006480, A000897. Factors: A005809, A066802.
Sequence in context: A248708 A184890 A295598 * A009564 A269762 A291912
Adjacent sequences: A113421 A113422 A113423 * A113425 A113426 A113427
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michael Somos, Oct 31 2005
|
|
STATUS
|
approved
|
|
|
|