login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113424 a(n) = (6n)!/((3n)!(2n)!n!). 9
1, 60, 13860, 4084080, 1338557220, 465817912560, 168470811709200, 62588625639883200, 23717177328413240100, 9124964373613212524400, 3553261127084984957001360, 1397224499394244497967972800, 553883078634868423069470550800, 221068174083308549543680044926400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Appears in Ramanujan's theory of elliptic functions of signature 6.

The family of elliptic curves "x=2*H=p^2+q^2-q^3, 0<x<4/27" generates these a_n as the coefficients of the period-energy function "T(x)=2*Pi*2F1(1/6,5/6;1;(27/4)*x)". Set y=(27/4)*x, the Weierstrass parameters of this family are g2=(1/12), g3=(1/216)(1-2*y), j=432/(y-y^2). Our current statistical estimates suggest that about 500000 of Q-curves in LMFDB belong to this family. - Bradley Klee, Feb 25 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

J. Cremona, Elliptic Curves over Q, LMFDB 2017.

H. J. Brothers, Pascal's Prism: Supplementary Material

B. Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.

B. Klee, On LMFDB period data , LMFDB-support mailing list, 2018.

B. Klee, Weierstrass Solution of Cubic Anharmonic Oscillation, Wolfram Demonstrations Project, 2018.

S. Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.

L. C. Shen, A note on Ramanujan’s identities involving the hypergeometric function 2F1(1/6,5/6;1;z), The Ramanujan Journal, 30.2 (2013), 211-222.

FORMULA

G.f.: hypergeometric2F1(1/6, 5/6; 1; 432 * x).

a(n) ~ 432^n/(2*Pi*n). - Ilya Gutkovskiy, Oct 13 2016

a(n) = A005809(n)*A066802(n). - Bradley Klee, Feb 25 2018

0 = a(n)*(-267483013447680*a(n+2) +25577192448000*a(n+3) -204669037440*a(n+4) +372142500*a(n+5)) +a(n+1)*(+408751349760*a(n+2) -57870650880*a(n+3) +546809652*a(n+4) -1088188*a(n+5)) +a(n+2)*(-17884800*a(n+2) +21466920*a(n+3) - 295844*a(n+4) +693*a(n+5)) for all n in Z. - Michael Somos, May 16 2018

EXAMPLE

G.f. = 1 + 60*x + 13860*x^2 + 4084080*x^3 + 1338557220*x^4 + ... - Michael Somos, Dec 02 2018

MATHEMATICA

a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 5/6, 1, 432 x], {x, 0, n}];

Table[Multinomial[n, 2 n, 3 n], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 12 2016 *)

a[ n_] := Multinomial[n, 2 n, 3 n]; (* Michael Somos, Dec 02 2018 *)

PROG

(PARI) {a(n) = if( n<0, 0, (6*n)! / ((3*n)! * (2*n)! * n!))};

(GAP) List([0..15], n->Factorial(6*n)/(Factorial(3*n)*Factorial(2*n)*Factorial(n))); # Muniru A Asiru, Apr 08 2018

CROSSREFS

Elliptic Integrals: A002894, A006480, A000897. Factors: A005809, A066802.

Sequence in context: A248708 A184890 A295598 * A009564 A269762 A291912

Adjacent sequences:  A113421 A113422 A113423 * A113425 A113426 A113427

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 31 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 04:22 EST 2019. Contains 330013 sequences. (Running on oeis4.)