login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113424 a(n) = (6n)!/((3n)!(2n)!n!). 9
1, 60, 13860, 4084080, 1338557220, 465817912560, 168470811709200, 62588625639883200, 23717177328413240100, 9124964373613212524400, 3553261127084984957001360, 1397224499394244497967972800, 553883078634868423069470550800, 221068174083308549543680044926400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Appears in Ramanujan's theory of elliptic functions of signature 6.

The family of elliptic curves "x=2*H=p^2+q^2-q^3, 0<x<4/27" generates these a_n as the coefficients of the period-energy function "T(x)=2*Pi*2F1(1/6,5/6;1;(27/4)*x)". Set y=(27/4)*x, the Weierstrass parameters of this family are g2=(1/12), g3=(1/216)(1-2*y), j=432/(y-y^2). Our current statistical estimates suggest that about 500000 of Q-curves in LMFDB belong to this family. - Bradley Klee, Feb 25 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

J. Cremona, Elliptic Curves over Q, LMFDB 2017.

H. J. Brothers, Pascal's Prism: Supplementary Material

B. Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.

B. Klee, On LMFDB period data , LMFDB-support mailing list, 2018.

B. Klee, Weierstrass Solution of Cubic Anharmonic Oscillation, Wolfram Demonstrations Project, 2018.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.

S. Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.

L. C. Shen, A note on Ramanujan’s identities involving the hypergeometric function 2F1(1/6,5/6;1;z), The Ramanujan Journal, 30.2 (2013), 211-222.

FORMULA

G.f.: hypergeometric2F1(1/6, 5/6; 1; 432 * x).

a(n) ~ 432^n/(2*Pi*n). - Ilya Gutkovskiy, Oct 13 2016

a(n) = A005809(n)*A066802(n). - Bradley Klee, Feb 25 2018

0 = a(n)*(-267483013447680*a(n+2) +25577192448000*a(n+3) -204669037440*a(n+4) +372142500*a(n+5)) +a(n+1)*(+408751349760*a(n+2) -57870650880*a(n+3) +546809652*a(n+4) -1088188*a(n+5)) +a(n+2)*(-17884800*a(n+2) +21466920*a(n+3) - 295844*a(n+4) +693*a(n+5)) for all n in Z. - Michael Somos, May 16 2018

From Peter Bala, Feb 28 2020: (Start)

a(n) = C(6*n,2*n)*C(4*n,n).

Supercongruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k (apply Mestrovic, equation 39).

(-1)^n*a(n) = [x^(2*n)*y^(2*n)] ( (1 + x + y)*(1 - x + y) )^(4*n).

a(n) = [x^n] ( F(x) )^(60*n), where F(x) = 1 + x + 56*x^2 + 7355*x^3 + 1290319*x^4 + 264117464*x^5 + 59508459679*x^6 + ... appears to have integer coefficients. We conjecture that for k >= 1 the sequence b_k(n) := [x^n] F(x)^(k*n) satisfies the above supercongruences for prime p >= 7. (End)

EXAMPLE

G.f. = 1 + 60*x + 13860*x^2 + 4084080*x^3 + 1338557220*x^4 + ... - Michael Somos, Dec 02 2018

MATHEMATICA

a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 5/6, 1, 432 x], {x, 0, n}];

Table[Multinomial[n, 2 n, 3 n], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 12 2016 *)

a[ n_] := Multinomial[n, 2 n, 3 n]; (* Michael Somos, Dec 02 2018 *)

PROG

(PARI) {a(n) = if( n<0, 0, (6*n)! / ((3*n)! * (2*n)! * n!))};

(GAP) List([0..15], n->Factorial(6*n)/(Factorial(3*n)*Factorial(2*n)*Factorial(n))); # Muniru A Asiru, Apr 08 2018

CROSSREFS

Elliptic Integrals: A002894, A006480, A000897. Factors: A005809, A066802.

Sequence in context: A248708 A184890 A295598 * A009564 A269762 A291912

Adjacent sequences:  A113421 A113422 A113423 * A113425 A113426 A113427

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 31 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 02:54 EST 2021. Contains 341814 sequences. (Running on oeis4.)