login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113421
Expansion of eta(q)^2 * eta(q^4) * eta(q^6)^2 * eta(q^12) / eta(q^3)^2 in powers of q.
3
1, -2, -1, 4, -4, 2, 6, -8, 1, 8, -12, -4, 14, -12, 4, 16, -16, -2, 18, -16, -6, 24, -24, 8, 21, -28, -1, 24, -28, -8, 30, -32, 12, 32, -24, 4, 38, -36, -14, 32, -40, 12, 42, -48, -4, 48, -48, -16, 43, -42, 16, 56, -52, 2, 48, -48, -18, 56, -60, 16, 62, -60, 6, 64, -56, -24, 66, -64, 24, 48, -72, -8, 74, -76, -21, 72
OFFSET
1,2
COMMENTS
Number 26 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 12 sequence [-2, -2, 0, -3, -2, -2, -2, -3, 0, -2, -2, -4, ...].
G.f.: Sum_{k>0} (3*k - 2) * x^(3*k - 2) / (1 + x^(6*k - 4)) - (3*k - 1) * x^(3*k - 1) / (1 + x^(6*k - 2)).
G.f.: Sum_{k>0} -(-1)^k * x^(2*k - 1) * (1 - x^(2*k - 1))^2 * (1 - x^(4*k - 2)) / (1 - x^(6*k - 3))^2.
a(n) is multiplicative with a(2^e) = (-2)^e, a(3^e) = (-1)^e, a(p^e) = (x^(e+1) - y^(e+1)) / (x - y) where x = p * Kronecker( -3, p) and y = (-1)^[p/2].
EXAMPLE
G.f. = q - 2*q^2 - q^3 + 4*q^4 - 4*q^5 + 2*q^6 + 6*q^7 - 8*q^8 + q^9 + 8*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 QPochhammer[ q^4] QPochhammer[ q^6]^2 QPochhammer[ q^12] / QPochhammer[ q^3]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d * kronecker( -3, d) * (-1)^(n / d \ 2)))};
(PARI) {a(n) = my(A, p, e, t); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (-2)^e, p==3, (-1)^e, t = (-1)^(p\2); p *= kronecker( -3, p); (p^(e+1) - t^(e+1)) / (p - t))))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / eta(x^3 + A)^2, n))};
CROSSREFS
Sequence in context: A309086 A261070 A249140 * A135366 A247248 A192017
KEYWORD
sign,mult
AUTHOR
Michael Somos, Oct 29 2005
STATUS
approved