OFFSET
0,2
COMMENTS
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..100
FORMULA
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} binomial(n, i)*binomial(n, j) *binomial(n, k)*binomial(3n, i+j+k). - Benoit Cloitre, Mar 08 2005
O.g.f. (with a(0):=1): (cb(x^(1/3)) + sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3))+1+2*x^(1/3)))/3, with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x) = 1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z) the o.g.f. of the Legendre polynomials). - Wolfdieter Lang, Mar 24 2011
O.g.f. also 1 + 20*x*4F3(1,7/6,3/2,11/6; 4/3,5/3,2; 64*x). - R. J. Mathar, Sep 17 2012
n*(3n-1)*(3n-2)*a(n) = 8*(6n-5)*(6n-1)*(2n-1)*a(n-1). - R. J. Mathar, Sep 17 2012
a(n) = GegenbauerC(3*n, -3*n, -1)). - Peter Luschny, May 07 2016
a(n) = hypergeom([-3*n, -3*n], [1], 1). - Peter Luschny, Mar 19 2018
a(n) ~ 2^(6*n)/sqrt(3*Pi*n). - Vaclav Kotesovec, Jun 07 2019
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k.
a(n) = [(x*y)^(3*n)] (1 + x + y)^(6*n). Cf. A001448. (End)
Conjecture: a(n) = [x^n] G(x)^(2*n), where G(x) = (1 + x)*(1 - 6*x + x^2)/(2*x) + (x^2 - 1)*sqrt(1 - 14*x + x^2)/(2*x) = 1 + 10*x + 81*x^2 + 720*x^3 + .... The algebraic function G(x) satisfies the quadratic equation x*G(x)^2 - (1 - 5*x - 5*x^2 + x^3)*G(x) + (1 + x)^4 = 0. Cf. A001450. - Peter Bala, Oct 27 2022
a(n) = Sum_{k = 0..3*n} binomial(3*n+k-1, k). - Peter Bala, Jun 04 2024
MAPLE
a := n -> hypergeom([-3*n, -3*n], [1], 1):
seq(simplify(a(n)), n=0..13); # Peter Luschny, Mar 19 2018
MATHEMATICA
Table[Binomial[6n, 3n], {n, 0, 13}] (* Jean-François Alcover, Jun 03 2019 *)
PROG
(PARI) { for (n=0, 100, write("b066802.txt", n, " ", binomial(6*n, 3*n)) ) } \\ Harry J. Smith, Mar 28 2010
(Magma) [Binomial(6*n, 3*n): n in [0..15]]; // G. C. Greubel, Feb 17 2020
(Sage) [binomial(6*n, 3*n) for n in (0..15)] # G. C. Greubel, Feb 17 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 18 2002
EXTENSIONS
Extended to a(0)=1 by M. F. Hasler, Oct 06 2014
STATUS
approved