login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305116
O.g.f. A(x) satisfies: [x^n] exp( n^2 * x*A(x) ) * (n + 1 - A(x)) = 0 for n >= 0, where A(0) = 1.
8
1, 1, 20, 918, 80032, 12042925, 2930093028, 1091180685420, 593430683068672, 453081063936151719, 469964400518950271900, 644367335619103754943450, 1141157288474505534959353440, 2559472926372019471694595185328, 7148083254588411836230809315647744, 24494543545202626717977721555958466300, 101668844348061438731562868186881235350528
OFFSET
0,3
COMMENTS
Note: the factorial series, F(x) = Sum_{n>=0} n! * x^n, satisfies:
(1) [x^n] exp( x*F(x) ) * (n + 1 - F(x)) = 0 for n > 0,
(2) [x^n] exp( n * x*F(x) ) * (2 - F(x)) = 0 for n > 0.
It is remarkable that this sequence should consist entirely of integers.
LINKS
FORMULA
a(n) ~ c * n!^3, where c = 13.46489329292094724950380929883219... - Vaclav Kotesovec, Oct 06 2020
EXAMPLE
O.g.f.: A(x) = 1 + x + 20*x^2 + 918*x^3 + 80032*x^4 + 12042925*x^5 + 2930093028*x^6 + 1091180685420*x^7 + 593430683068672*x^8 + 453081063936151719*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n^2 * x*A(x) ) * (n + 1 - A(x)) begins:
n=0: [0, -1, -40, -5508, -1920768, -1445151000, -2109666980160, ...];
n=1: [1, 0, -39, -5510, -1921491, -1445365884, -2109780457715, ...];
n=2: [2, 7, 0, -4780, -1823168, -1405023192, -2074130121472, ...];
n=3: [3, 26, 239, 0, -1391649, -1249241538, -1942417653741, ...];
n=4: [4, 63, 1080, 21916, 0, -860673816, -1637736990272, ...];
n=5: [5, 124, 3285, 101342, 4459057, 0, -1050171876535, ...];
n=6: [6, 215, 8096, 338580, 18744384, 1958675496, 0, ...];
n=7: [7, 342, 17355, 946660, 61910307, 6852230778, 1865443733743, 0, ...]; ...
in which the coefficients of x^n in row n form a diagonal of zeros.
RELATED SERIES.
exp(x*A(x)) = 1 + x + 3*x^2/2! + 127*x^3/3! + 22537*x^4/4! + 9717681*x^5/5! + 8729681611*x^6/6! + 14829069291583*x^7/7! + 44115361026430737*x^8/8! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)^2*x*(Ser(A)) ) * ((m-1)+1 - Ser(A)) )[m] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 26 2018
STATUS
approved