login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305118
a(n) = Sum_{k=0..n-1} ( 1 + a(k) * a(n-k-1) ) for n >= 1, a(0) = 1.
1
1, 2, 6, 19, 66, 249, 996, 4148, 17784, 77939, 347516, 1571304, 7187288, 33196887, 154611392, 725284721, 3423760262, 16251813715, 77523741208, 371428985796, 1786623827240, 8624669381161, 41769772877288, 202893913979291, 988224403828490, 4825331506973445
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * (1/(1 - x)^2 + A(x)^2). - Ilya Gutkovskiy, Jun 30 2020
From Vaclav Kotesovec, Jun 30 2020: (Start)
G.f.: (1 - sqrt(1 - 4*x*(1 + x/(1 - x)^2))) / (2*x).
a(n) ~ sqrt(1/r + 2/(1 - r)^3) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.19288682865259090392018... is the real root of the equation -1 + 6*r - 5*r^2 + 4*r^3 = 0. (End)
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4*x*(1 + x/(1 - x)^2)]) / (2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 30 2020 *)
PROG
(PARI)
seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, 1 + a[k]*a[n-k])); a;
};
seq(32)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 26 2018
STATUS
approved