OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(3*n-4)*a(n-2) +2*(-6*n+11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(n-4)*a(n-7) +2*(-2*n+9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360212 := proc(n)
add((-1)^k*binomial(2*n-5*k, n-3*k), k=0..n/3) ;
end proc:
seq(A360212(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-5*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^3/(1+sqrt(1-4*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 30 2023
STATUS
approved