login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360212
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-5*k,n-3*k).
3
1, 2, 6, 19, 67, 242, 890, 3310, 12423, 46959, 178526, 681893, 2614698, 10059000, 38807021, 150080294, 581649776, 2258469988, 8783966719, 34214789901, 133450049457, 521134066663, 2037313708685, 7972641631438, 31228124666374, 122421230120657
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(3*n-4)*a(n-2) +2*(-6*n+11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(n-4)*a(n-7) +2*(-2*n+9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360212 := proc(n)
add((-1)^k*binomial(2*n-5*k, n-3*k), k=0..n/3) ;
end proc:
seq(A360212(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-5*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^3/(1+sqrt(1-4*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 30 2023
STATUS
approved