OFFSET
1,2
COMMENTS
To ensure the sequence is infinite another criterion must be satisfied when choosing a(n), namely a(n) + a(n-1) must contain a factor not in a(n-1). If this were not the case, a(n+1) = a(n) + a(n-1) would share a factor with both a(n) + a(n-1) and a(n-1), terminating the sequence.
In the first 100000 terms the fixed points for n > 2 are 3, 6, 441, 1677, 3629, 9701, 17131, although it is likely more exist. The sequence is conjectured to be a permutation of the positive integers.
LINKS
Scott R. Shannon, Image for n=1..100000. The green line is a(n) = n.
EXAMPLE
a(7) = 15 as a(5) + a(6) = 4 + 6 = 10, and 15 is the smallest positive unused number that shares a factor with 10 but not with a(5) = 4.
a(41) = 44 as a(39) + a(40) = 47 + 30 = 77, and 44 shares a factor with 77 but not with a(39) = 47. Note that 42 also satisfies these criteria but 30 + 42 = 72 which shares all its factors with a(40) = 30, thus setting a(41) = 42 would make it impossible to find a(42).
CROSSREFS
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Jan 29 2023
EXTENSIONS
a(6) and above corrected by Scott R. Shannon, Mar 17 2023
STATUS
approved