login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360207
Triangular array T(n,k) read by antidiagonals: T(2,1) = 1; otherwise T(n,k) = p(n)!/(p(k)!*p(n-k)!), where p(0)=1 and p(m)=prime(m) for m > 0.
2
1, 1, 1, 1, 1, 1, 1, 10, 10, 1, 1, 21, 140, 21, 1, 1, 3960, 55440, 55440, 3960, 1, 1, 78, 205920, 432432, 205920, 78, 1, 1, 28560, 1485120, 588107520, 588107520, 1485120, 28560, 1, 1, 171, 3255840, 25395552, 4788875520, 25395552, 3255840, 171, 1
OFFSET
0,8
COMMENTS
Essentially analogous to Pascal's triangle, A007318.
FORMULA
T(2,1) = 1; otherwise T(n,k) = p(n)!/(p(k)!*p(n-k)!), where p(0)=1 and p(m)=prime(m) for m > 0.
EXAMPLE
First six rows:
1
1 1
1 1 1
1 10 10 1
1 21 140 21 1
1 3960 55440 55440 3960 1
...
MAPLE
p:= n-> `if`(n=0, 1, ithprime(n)):
T:= (n, k)-> floor(p(n)!/(p(k)!*p(n-k)!)):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 30 2023
MATHEMATICA
p[0] = 1; p[n_] := Prime[n];
t = Table[p[n]!/(p[k]!*p[n - k]!), {n, 0, 10}, {k, 0, n}]
t[[3, 2]] = 1;
TableForm[t] (* A360207 array *)
Flatten[t] (* A360207 sequence *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 30 2023
STATUS
approved