login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187364
Trisection of A000984 (central binomial coefficients): binomial(2(3n+1),3n+1)/2, n>=0.
10
1, 35, 1716, 92378, 5200300, 300540195, 17672631900, 1052049481860, 63205303218876, 3824345300380220, 232714176627630544, 14226520737620288370, 873065282167813104916, 53753604366668088230810, 3318776542511877736535400, 205397724721029574666088520
OFFSET
0,2
COMMENTS
See a comment under A187363 concerning trisection.
This appears also in the trisection of A001700 (central binomials in the odd numbered Pascal rows): binomial(2*(3*n)+1,3*n+1).
LINKS
FORMULA
a(n) = binomial(2*(3*n+1),3*n+1)/2, n>=0.
a(n) = binomial(2*(3*n)+1,3*n+1), n>=0.
O.g.f.: (cb(x^(1/3)) - sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3))-(1+8*x^(1/3))/2))/(6*x^(1/3)), with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x)=1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z) the o.g.f. of the Legendre polynomials).
From Peter Bala, Mar 19 2023: (Start)
a(n) = (1/2)*Sum_{k = 0..3*n+1} binomial(3*n+1,k)^2.
a(n) = (1/2)*hypergeom([-1 - 3*n, -1 - 3*n], [1], 1).
a(n) = 8*(2*n - 1)*(6*n + 1)*(6*n - 1)/(n*(3*n + 1)*(3*n - 1)) * a(n-1). (End)
Right-hand side of the binomial sum identity (1/18) * Sum_{k = 0..6*n+3} (-1)^(n+k) * (k/(2*n + 1))^2 * binomial(6*n+3, k)^2 = a(n). - Peter Bala, Nov 05 2024
MATHEMATICA
Table[c=3n+1; Binomial[2c, c]/2, {n, 0, 20}] (* Harvey P. Dale, May 10 2012 *)
CROSSREFS
Cf. A066802 (binomial(6n,3n)), A187365 (binomial(2(3n+2),3n+2)/3!).
Sequence in context: A130005 A199362 A373115 * A183417 A199587 A001825
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 10 2011
STATUS
approved