login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066799
Square array read by antidiagonals of eventual period of powers of k mod n; period of repeating digits of 1/n in base k.
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 2, 1, 4, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 2, 3, 4, 10, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 2, 5, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 12
OFFSET
1,9
COMMENTS
The determinant of the n X n matrix made from the northwest corner of this array is 0^(n-1). - Iain Fox, Mar 12 2018
FORMULA
T(n, k) = T(n, k-n) if k > n.
T(n, n) = T(n, n+1) = 1.
T(n, n-1) = 2.
EXAMPLE
Rows start: 1,1,1,1,1,...; 1,1,1,1,1,...; 1,2,1,1,2,...; 1,1,2,1,1; 1,4,4,2,1,... T(3,2)=2 since the powers of 2 become 1,2,1,2,1,2,... mod 3 with period 2. T(4,2)=1 since the powers of 2 become 1,2,0,0,0,0,... mod 4 with eventual period 1.
Beginning of array:
+-----+--------------------------------------------------------------------
| n\k | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
+-----+--------------------------------------------------------------------
| 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
| 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
| 3 | 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...
| 4 | 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, ...
| 5 | 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 1, ...
| 6 | 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...
| 7 | 1, 3, 6, 3, 6, 2, 1, 1, 3, 6, 3, 6, 2, 1, 1, 3, ...
| 8 | 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, ...
| ... |
MATHEMATICA
t[n_, k_] := For[p = PowerMod[k, n, n]; m = n + 1, True, m++, If[PowerMod[k, m, n] == p, Return[m - n]]]; Flatten[Table[t[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}]] (* Jean-François Alcover, Jun 04 2012 *)
PROG
(PARI) a(n, k) = my(p=k^n%n); for(m=n+1, +oo, if(k^m%n==p, return(m-n))) \\ Iain Fox, Mar 12 2018
CROSSREFS
Columns are A000012, A007733, A007734, A007735, A007736, A007737, A007738, A007739, A007740, A007732. A002322 is the highest value in each row and the least common multiple of each row, while the number of distinct values in each row is A066800.
Sequence in context: A193582 A091887 A144871 * A238900 A037832 A170977
KEYWORD
nonn,tabl,base
AUTHOR
Henry Bottomley, Dec 20 2001
STATUS
approved