OFFSET
1,9
COMMENTS
The determinant of the n X n matrix made from the northwest corner of this array is 0^(n-1). - Iain Fox, Mar 12 2018
LINKS
FORMULA
T(n, k) = T(n, k-n) if k > n.
T(n, n) = T(n, n+1) = 1.
T(n, n-1) = 2.
EXAMPLE
Rows start: 1,1,1,1,1,...; 1,1,1,1,1,...; 1,2,1,1,2,...; 1,1,2,1,1; 1,4,4,2,1,... T(3,2)=2 since the powers of 2 become 1,2,1,2,1,2,... mod 3 with period 2. T(4,2)=1 since the powers of 2 become 1,2,0,0,0,0,... mod 4 with eventual period 1.
Beginning of array:
+-----+--------------------------------------------------------------------
| n\k | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
+-----+--------------------------------------------------------------------
| 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
| 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
| 3 | 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...
| 4 | 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, ...
| 5 | 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 1, ...
| 6 | 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...
| 7 | 1, 3, 6, 3, 6, 2, 1, 1, 3, 6, 3, 6, 2, 1, 1, 3, ...
| 8 | 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, ...
| ... |
MATHEMATICA
t[n_, k_] := For[p = PowerMod[k, n, n]; m = n + 1, True, m++, If[PowerMod[k, m, n] == p, Return[m - n]]]; Flatten[Table[t[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}]] (* Jean-François Alcover, Jun 04 2012 *)
PROG
(PARI) a(n, k) = my(p=k^n%n); for(m=n+1, +oo, if(k^m%n==p, return(m-n))) \\ Iain Fox, Mar 12 2018
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Dec 20 2001
STATUS
approved