login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007737
Period of repeating digits of 1/n in base 6.
8
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 10, 1, 12, 2, 1, 1, 16, 1, 9, 1, 2, 10, 11, 1, 5, 12, 1, 2, 14, 1, 6, 1, 10, 16, 2, 1, 4, 9, 12, 1, 40, 2, 3, 10, 1, 11, 23, 1, 14, 5, 16, 12, 26, 1, 10, 2, 9, 14, 58, 1, 60, 6, 2, 1, 12, 10, 33, 16, 11, 2, 35, 1, 36, 4, 5, 9, 10, 12, 78, 1, 1, 40, 82, 2, 16, 3, 14, 10
OFFSET
1,7
COMMENTS
Not multiplicative. Smallest counterexample: a(77)=10, but a(7) = 2 and a(11) = 10. - Mitch Harris, May 16 2005.
MATHEMATICA
DigitCycleLength[r_Rational, b_Integer?Positive] := MultiplicativeOrder[b, FixedPoint[ Quotient[#, GCD[#, b]] &, Denominator[r]]]; DigitCycleLength[1, b_Integer?Positive] = 1; Array[ DigitCycleLength[1/#, 6] &, 80] (* Robert G. Wilson v, Jun 10 2011 *)
a[n_] := MultiplicativeOrder[6, n/Times @@ ({2, 3}^IntegerExponent[n, {2, 3}])]; Array[a, 100] (* Amiram Eldar, Aug 26 2024 *)
PROG
(PARI) a(n)=znorder(Mod(6, n/2^valuation(n, 2)/3^valuation(n, 3))); \\ Joerg Arndt, Dec 14 2014
CROSSREFS
Cf. A007733 (base 2), A007734 (3), A007735 (4), A007736 (5), A007738 (7), A007739 (8), A007740 (9), A007732 (10).
Sequence in context: A225700 A156188 A179930 * A229243 A105688 A066017
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
EXTENSIONS
More terms from David W. Wilson
STATUS
approved