login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225700
Denominators of coefficients arising from q-expansion of Integrate[eta[q^4]^8/eta[q^2]^4, q]/q where eta is the Dedekind eta function.
3
2, 1, 1, 1, 10, 1, 1, 2, 1, 1, 11, 1, 26, 7, 1, 1, 17, 3, 1, 5, 1, 1, 23, 1, 50, 13, 1, 7, 29, 1, 1, 8, 11, 1, 35, 1, 1, 19, 13, 1, 82, 1, 43, 11, 1, 23, 47, 4, 1, 25, 1, 1, 53
OFFSET
0,1
COMMENTS
Gosper observes that A225699/A225700 = A008438/(2,4,6,8,10,...) and hence the coefficient of q^k in the q-expansion is 1 iff k is an odd prime (see Example section below).
Note that, as usual in the OEIS, the q-expansion has been normalized here to avoid having every other term be zero.
REFERENCES
R. W. Gosper, Posting to the Math Fun Mailing List, Jun 01 2013
EXAMPLE
q/2 + q^3 + q^5 + q^7 + (13*q^9)/10 + q^11 + q^13 + (3*q^15)/2 + q^17 + q^19 + (16*q^21)/11 + q^23 + (31*q^25)/26 + (10*q^27)/7 + q^29 + q^31 + (24*q^33)/17 + (4*q^35)/3 + q^37 + (7*q^39)/5 + q^41 + q^43 + (39*q^45)/23 + q^47 + (57*q^49)/50 + (18*q^51)/13 + q^53 + (9*q^55)/7 + (40*q^57)/29 + q^59 + q^61 + (13*q^63)/8 + (14*q^65)/11 + q^67 + (48*q^69)/35 + q^71 + q^73 + (31*q^75)/19 + (16*q^77)/13 + q^79 + (121*q^81)/82 + q^83 + (54*q^85)/43 + (15*q^87)/11 + q^89 + (28*q^91)/23 + (64*q^93)/47 + (5*q^95)/4 + q^97 + (39*q^99)/25 + q^101 + q^103 + (96*q^105)/53 + ...
CROSSREFS
Cf. A225700. See A008438 for eta[q^4]^8/eta[q^2]^4.
Sequence in context: A208896 A288972 A065521 * A156188 A179930 A007737
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 01 2013
STATUS
approved