login
A225702
Composite squarefree numbers n such that p-2 divides n+2 for each prime p dividing n.
33
273, 54943, 67303, 199393, 831283, 1097305, 1363723, 1569103, 1590433, 3199579, 3282433, 3503773, 5645563, 5659333, 9260053, 9733843, 9984115, 10738033, 16645363, 19229533, 32168743, 37759363, 38645233, 50806585, 53825497, 56451373, 58327423, 62207173
OFFSET
1,1
EXAMPLE
Prime factors of 1097305 are 5, 11, 71 and 281. We have that (1097305+2)/(5-2)= 365769, (1097305+2)/(11-2) = 121923, (1097305+2)/(71-2)= 15903 and (1097305+2)/(281-2) = 3933.
MAPLE
with(numtheory); A225702:=proc(i, j) local c, d, n, ok, p, t;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225702(10^9, 2);
MATHEMATICA
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 2] > 0 && Union[Mod[n + 2, p - 2]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t
PROG
(PARI) is(n, f=factor(n))=if(#f[, 2]<3 || vecmax(f[, 2])>1 || f[1, 1]==2, return(0)); for(i=1, #f~, if((n+2)%(f[i, 1]-2), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 13 2013
EXTENSIONS
Extended by T. D. Noe, May 17 2013
STATUS
approved