login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225702 Composite squarefree numbers n such that p-2 divides n+2 for each prime p dividing n. 33
273, 54943, 67303, 199393, 831283, 1097305, 1363723, 1569103, 1590433, 3199579, 3282433, 3503773, 5645563, 5659333, 9260053, 9733843, 9984115, 10738033, 16645363, 19229533, 32168743, 37759363, 38645233, 50806585, 53825497, 56451373, 58327423, 62207173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..28.

EXAMPLE

Prime factors of 1097305 are 5, 11, 71 and 281. We have that (1097305+2)/(5-2)= 365769, (1097305+2)/(11-2) = 121923, (1097305+2)/(71-2)= 15903 and (1097305+2)/(281-2) = 3933.

MAPLE

with(numtheory); A225702:=proc(i, j) local c, d, n, ok, p, t;

for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;

if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;

if ok=1 then print(n); fi; fi; od; end: A225702(10^9, 2);

MATHEMATICA

t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 2] > 0 && Union[Mod[n + 2, p - 2]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t

PROG

(PARI) is(n, f=factor(n))=if(#f[, 2]<3 || vecmax(f[, 2])>1 || f[1, 1]==2, return(0)); for(i=1, #f~, if((n+2)%(f[i, 1]-2), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017

CROSSREFS

Cf. A208728, A225703-A225720.

Sequence in context: A210270 A351766 A321035 * A307537 A295455 A174771

Adjacent sequences: A225699 A225700 A225701 * A225703 A225704 A225705

KEYWORD

nonn

AUTHOR

Paolo P. Lava, May 13 2013

EXTENSIONS

Extended by T. D. Noe, May 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 19:14 EST 2022. Contains 358453 sequences. (Running on oeis4.)