login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225702 Composite squarefree numbers n such that p-2 divides n+2 for each prime p dividing n. 33
273, 54943, 67303, 199393, 831283, 1097305, 1363723, 1569103, 1590433, 3199579, 3282433, 3503773, 5645563, 5659333, 9260053, 9733843, 9984115, 10738033, 16645363, 19229533, 32168743, 37759363, 38645233, 50806585, 53825497, 56451373, 58327423, 62207173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..28.

EXAMPLE

Prime factors of 1097305 are 5, 11, 71 and 281. We have that (1097305+5)/(5-2)= 365769, (1097305+2)/(11-2) = 121923, (1097305+2)/(71-2)= 15903 and (1097305+2)/(281-2) = 3933.

MAPLE

with(numtheory); A225702:=proc(i, j) local c, d, n, ok, p, t;

for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;

if  not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;

if ok=1 then print(n); fi; fi; od; end: A225702(10^9, 2);

MATHEMATICA

t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 2] > 0 && Union[Mod[n + 2, p - 2]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t

PROG

(PARI) is(n, f=factor(n))=if(#f[, 2]<3 || vecmax(f[, 2])>1 || f[1, 1]==2, return(0)); for(i=1, #f~, if((n+2)%(f[i, 1]-2), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017

CROSSREFS

Cf. A208728, A225703-A225720.

Sequence in context: A279114 A210270 A321035 * A307537 A295455 A174771

Adjacent sequences:  A225699 A225700 A225701 * A225703 A225704 A225705

KEYWORD

nonn

AUTHOR

Paolo P. Lava, May 13 2013

EXTENSIONS

Extended by T. D. Noe, May 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:46 EDT 2021. Contains 345419 sequences. (Running on oeis4.)