login
A225720
Composite squarefree numbers n such that p+10 divides n-10 for each prime p dividing n.
33
10, 79222, 206965, 784090, 1673122, 2227123, 4798090, 5202571, 9196330, 13146715, 15015430, 18213595, 19342333, 21735010, 27907435, 28234018, 28240090, 37394146, 38710990, 53990695, 54772453, 70646509, 79671826, 89678830, 107251990, 114572545, 115005187, 137245690
OFFSET
1,1
EXAMPLE
Prime factors of 2227123 are 19, 251 and 467. We have that (2227123-10)/(19+10) = 76797, (2227123-10)/(251+10) = 8533 and (2227123-10)/(467+10) = 4669.
MAPLE
with(numtheory); A225720:=proc(i, j) local c, d, n, ok, p, t;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225720(10^9, -10);
PROG
(PARI) is(n, f=factor(n))=if(#f[, 2]<2 || vecmax(f[, 2])>1, return(0)); for(i=1, #f~, if((n-10)%(f[i, 1]+10), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 13 2013
EXTENSIONS
a(20)-a(27) from Donovan Johnson, Nov 15 2013
a(28) from Charles R Greathouse IV, Nov 05 2017
STATUS
approved