login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225723
Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.
1
1, 2, 3, 12, 9, 17, 108, 72, 68, 142, 1280, 810, 680, 710, 1569, 18750, 11520, 9180, 8520, 9414, 21576, 326592, 196875, 152320, 134190, 131796, 151032, 355081, 6588344, 3919104, 2975000, 2544640, 2372328, 2416512, 2840648, 6805296
OFFSET
1,2
COMMENTS
T(n,1) = n*(n-1)^(n-1) = A055897(n).
Row sums = A190314.
T(n,n) = A001865(n).
Sum_{k=1..n} T(n,k)*k = n^(n+1).
LINKS
FORMULA
E.g.f.: log(1/(1 - A(x*y)))/(1 - A(x)) where A(x) is the e.g.f. for A000169.
T(n,k) = C(n,k)*A001865(k)*A000312(n-k). - Alois P. Heinz, May 13 2013
EXAMPLE
Triangle T(n,k) begins:
1;
2, 3;
12, 9, 17;
108, 72, 68, 142;
1280, 810, 680, 710, 1569;
18750, 11520, 9180, 8520, 9414, 21576;
326592, 196875, 152320, 134190, 131796, 151032, 355081;
...
MAPLE
b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):
T:= (n, k)-> binomial(n, k)*b(k)*(n-k)^(n-k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 13 2013
MATHEMATICA
nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =
Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];
Map[Select[#, # > 0 &] &,
Drop[Range[0, nn]! CoefficientList[
Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],
1]] // Grid
CROSSREFS
Cf. A225213.
Sequence in context: A320810 A104038 A112979 * A092972 A334914 A261576
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 13 2013
STATUS
approved