login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.
1

%I #11 Dec 17 2021 18:57:34

%S 1,2,3,12,9,17,108,72,68,142,1280,810,680,710,1569,18750,11520,9180,

%T 8520,9414,21576,326592,196875,152320,134190,131796,151032,355081,

%U 6588344,3919104,2975000,2544640,2372328,2416512,2840648,6805296

%N Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.

%C T(n,1) = n*(n-1)^(n-1) = A055897(n).

%C Row sums = A190314.

%C T(n,n) = A001865(n).

%C Sum_{k=1..n} T(n,k)*k = n^(n+1).

%H Alois P. Heinz, <a href="/A225723/b225723.txt">Rows n = 1..100, flattened</a>

%F E.g.f.: log(1/(1 - A(x*y)))/(1 - A(x)) where A(x) is the e.g.f. for A000169.

%F T(n,k) = C(n,k)*A001865(k)*A000312(n-k). - _Alois P. Heinz_, May 13 2013

%e Triangle T(n,k) begins:

%e 1;

%e 2, 3;

%e 12, 9, 17;

%e 108, 72, 68, 142;

%e 1280, 810, 680, 710, 1569;

%e 18750, 11520, 9180, 8520, 9414, 21576;

%e 326592, 196875, 152320, 134190, 131796, 151032, 355081;

%e ...

%p b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):

%p T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k):

%p seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, May 13 2013

%t nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =

%t Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];

%t Map[Select[#, # > 0 &] &,

%t Drop[Range[0, nn]! CoefficientList[

%t Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],

%t 1]] // Grid

%Y Cf. A225213.

%K nonn,tabl

%O 1,2

%A _Geoffrey Critzer_, May 13 2013