login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225721
Starting with x = n, the number of iterations of x := 2x - 1 until x is prime, or -1 if no prime exists.
1
-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4
OFFSET
1,8
COMMENTS
This appears to be a shifted variant of A040076. - R. J. Mathar, May 28 2013
If n is prime, then a(n) = 0. If the sequence never reaches a prime number (for n = 1) or the prime number has more than 1000 digits, -1 is used instead. There are 22 such numbers for n < 10000.
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
EXAMPLE
For a(20), the trajectory is 20->39->77->153->305->609->1217, a prime number. That required 6 steps, so a(20)=6.
PROG
(R)
y=as.bigz(rep(0, 500)); ys=rep(0, 500);
for(i in 1:500) { n=as.bigz(i); k=0;
while(isprime(n)==0 & ndig(n)<1000 & k<5000) { k=k+1; n=2*n-1 }
if(ndig(n)>=1000 | k>=5000) { ys[i]=-1; y[i]=-1;
} else {ys[i]=k; y[i]=n; }
}
CROSSREFS
Cf. A050921 (primes obtained).
Cf. A040081, A038699, A050412, A052333, A046069 (related to the Riesel problem).
Cf. A000668, A000043, A065341 (Mersenne primes), A000079 (powers of 2).
Cf. A007770 (happy numbers), A031177 (unhappy numbers).
Cf. A037274 (home primes), A037271 (steps), A037272, A037272.
Sequence in context: A328620 A257510 A305445 * A040076 A019269 A204459
KEYWORD
sign
STATUS
approved