login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065341
Mersenne composites: 2^prime(m) - 1 is not a prime.
20
2047, 8388607, 536870911, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 147573952589676412927, 2361183241434822606847, 9444732965739290427391
OFFSET
1,1
COMMENTS
For the number of prime factors in a(n) see A135975. For indices of primes n in composite 2^prime(n)-1 see A135980. For smallest prime divisors of Mersenne composites see A136030. For largest prime divisors of Mersenne composites see A136031. For largest divisors see A145097. - Artur Jasinski, Oct 01 2008
All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - Amiram Eldar, Jul 24 2021
LINKS
John H. Jaroma and Kamaliya N. Reddy, Classical and alternative approaches to the Mersenne and Fermat numbers, The American Mathematical Monthly, Vol. 114, No. 8 (2007), pp. 677-687.
FORMULA
a(n) = 2^A054723(n) - 1.
EXAMPLE
2^11 - 1 = 2047 = 23*89.
MAPLE
A065341 := proc(n) local i;
i := 2^(ithprime(n))-1:
if (not isprime(i)) then
RETURN (i)
fi: end: seq(A065341(n), n=1..21); # Jani Melik, Feb 09 2011
MATHEMATICA
Select[Table[2^Prime[n]-1, {n, 30}], !PrimeQ[#]&] (* Harvey P. Dale, May 06 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 30 2001
STATUS
approved