login
A135975
Number of prime factors (without multiplicity) in Mersenne composites A065341.
13
2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4, 3, 6, 4, 3, 4, 3, 4, 4
OFFSET
1,1
COMMENTS
Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - Gord Palameta, Aug 06 2018
LINKS
S. S. Wagstaff, Jr., Main Tables from the Cunningham Project: cofactor of M1213 is C297.
FORMULA
a(n) = A001221(A065341(n)). - Michel Marcus, Aug 07 2018
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
(PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* Jean-François Alcover, Aug 13 2014 *)
PROG
(PARI) forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 09 2007
EXTENSIONS
a(29)-a(46) from Felix Fröhlich, Aug 12 2014
a(47)-a(100) from Gord Palameta, Aug 07 2018
STATUS
approved