login
A136032
Number of prime factors (with multiplicity) of Mersenne composites (A065341).
2
2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4
OFFSET
1,1
COMMENTS
If the conjecture that all Mersenne composites are squarefree is true, then this sequence is identical to A135975. - Felix Fröhlich, Aug 24 2014
LINKS
FORMULA
a(n) = A001222(A065341(n)). - Michel Marcus, Aug 24 2014
MATHEMATICA
a = {}; Do[If[PrimeQ[n] && !PrimeQ[2^n - 1], w = 2^n - 1; c = FactorInteger[w]; d = Length[c]; b = 0; Do[b = b + c[[k]][[2]], {k, 1, d}]; AppendTo[a, b]], {n, 2, 150}]; a
PrimeOmega/@Select[2^Prime[Range[100]]-1, !PrimeQ[#]&] (* Harvey P. Dale, Nov 01 2016 *)
PROG
(PARI) forprime(p=2, 1e3, if(!ispseudoprime(2^p-1), print1(bigomega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 24 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 11 2007
EXTENSIONS
More terms from Michel Marcus, Nov 04 2013
Definition adjusted by Felix Fröhlich, Aug 24 2014
More terms from Felix Fröhlich, Aug 24 2014
STATUS
approved