|
|
A001348
|
|
Mersenne numbers: 2^p - 1, where p is prime.
(Formerly M2694 N1079)
|
|
122
|
|
|
3, 7, 31, 127, 2047, 8191, 131071, 524287, 8388607, 536870911, 2147483647, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 2305843009213693951, 147573952589676412927, 2361183241434822606847
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The 5th, 8th, 9th, ... terms are not prime. See A000668 for the primes in this sequence. - M. F. Hasler, Nov 14 2018
|
|
REFERENCES
|
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 16.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Raymond Clare Archibald, Mersenne's Numbers, Scripta Mathematica, Vol. 3 (1935), pp. 112-119.
John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers]
Will Edgington, Mersenne Page> [from Internet Archive Wayback Machine].
|
|
FORMULA
|
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
from sympy import prime
def a(n): return 2**prime(n)-1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|