OFFSET
0,1
COMMENTS
Erdős was interested in the question whether this constant is irrational. - Amiram Eldar, Apr 30 2020
Pratt gives a conditional proof that this constant is irrational. - Charles R Greathouse IV, Sep 26 2024
REFERENCES
Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.
LINKS
Paul Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.), Vol. 12 (1948), pp. 63-66.
Paul Erdős, On the irrationality of certain series, Math. Student, Vol. 36 (1969), pp. 222-226.
Kyle Pratt, The irrationality of a prime factor series under a prime tuples conjecture, arXiv preprint (2024). arXiv:2409.15185 [math.NT]
Eric Weisstein's World of Mathematics, Erdős-Borwein Constant.
Eric Weisstein's World of Mathematics, Prime Constant.
FORMULA
Equals Sum_{i>=1} 1/A001348(i). - R. J. Mathar, Feb 17 2016
Equals Sum_{k>=1} omega(k)/2^k, where omega(k) is the number of distinct primes dividing k (A001221). - Amiram Eldar, Apr 30 2020
EXAMPLE
0.51694281980564038424051660847985627797854694791309124165028...
MATHEMATICA
digits = 100; m0 = 100; dm = 100; s[m_] := s[m] = N[Sum[1/(2^Prime[n]-1), {n, 1, m}], digits+10]; s[m = m0]; Print[{m, s[m]}]; s[m = m + dm]; While[ Print[{m, s[m]}]; RealDigits[ s[m], 10, digits+5] != RealDigits[ s[m - dm], 10, digits+5], m = m + dm]; RealDigits[ s[m], 10, digits] // First
PROG
(PARI) suminf(k=1, omega(k)/2^k) \\ Michel Marcus, Apr 30 2020
(PARI) s=0.; forprime(p=2, bitprecision(1.)+1, s+=1./(2^p-1)); s \\ Charles R Greathouse IV, Sep 26 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Sep 13 2015
STATUS
approved