login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262153
Decimal expansion of Sum_{p prime} 1/(2^p-1), a prime equivalent of the Erdős-Borwein constant.
1
5, 1, 6, 9, 4, 2, 8, 1, 9, 8, 0, 5, 6, 4, 0, 3, 8, 4, 2, 4, 0, 5, 1, 6, 6, 0, 8, 4, 7, 9, 8, 5, 6, 2, 7, 7, 9, 7, 8, 5, 4, 6, 9, 4, 7, 9, 1, 3, 0, 9, 1, 2, 4, 1, 6, 5, 0, 2, 8, 0, 2, 4, 5, 8, 7, 1, 2, 3, 8, 0, 7, 5, 3, 4, 1, 1, 3, 6, 0, 3, 7, 7, 1, 9, 8, 1, 8, 0, 2, 8, 0, 5, 4, 0, 2, 5, 0, 8, 8, 2
OFFSET
0,1
COMMENTS
Erdős was interested in the question whether this constant is irrational. - Amiram Eldar, Apr 30 2020
Pratt gives a conditional proof that this constant is irrational. - Charles R Greathouse IV, Sep 26 2024
REFERENCES
Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.
LINKS
Paul Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.), Vol. 12 (1948), pp. 63-66.
Paul Erdős, On the irrationality of certain series, Math. Student, Vol. 36 (1969), pp. 222-226.
Kyle Pratt, The irrationality of a prime factor series under a prime tuples conjecture, arXiv preprint (2024). arXiv:2409.15185 [math.NT]
Eric Weisstein's World of Mathematics, Erdős-Borwein Constant.
Eric Weisstein's World of Mathematics, Prime Constant.
FORMULA
Equals Sum_{i>=1} 1/A001348(i). - R. J. Mathar, Feb 17 2016
Equals Sum_{k>=1} omega(k)/2^k, where omega(k) is the number of distinct primes dividing k (A001221). - Amiram Eldar, Apr 30 2020
EXAMPLE
0.51694281980564038424051660847985627797854694791309124165028...
MATHEMATICA
digits = 100; m0 = 100; dm = 100; s[m_] := s[m] = N[Sum[1/(2^Prime[n]-1), {n, 1, m}], digits+10]; s[m = m0]; Print[{m, s[m]}]; s[m = m + dm]; While[ Print[{m, s[m]}]; RealDigits[ s[m], 10, digits+5] != RealDigits[ s[m - dm], 10, digits+5], m = m + dm]; RealDigits[ s[m], 10, digits] // First
PROG
(PARI) suminf(k=1, omega(k)/2^k) \\ Michel Marcus, Apr 30 2020
(PARI) s=0.; forprime(p=2, bitprecision(1.)+1, s+=1./(2^p-1)); s \\ Charles R Greathouse IV, Sep 26 2024
CROSSREFS
Sequence in context: A306700 A058651 A164105 * A160824 A193586 A007397
KEYWORD
nonn,cons
AUTHOR
STATUS
approved