

A051006


Prime constant: decimal value of (A010051 interpreted as a binary number).


44



4, 1, 4, 6, 8, 2, 5, 0, 9, 8, 5, 1, 1, 1, 1, 6, 6, 0, 2, 4, 8, 1, 0, 9, 6, 2, 2, 1, 5, 4, 3, 0, 7, 7, 0, 8, 3, 6, 5, 7, 7, 4, 2, 3, 8, 1, 3, 7, 9, 1, 6, 9, 7, 7, 8, 6, 8, 2, 4, 5, 4, 1, 4, 4, 8, 8, 6, 4, 0, 9, 6, 0, 6, 1, 9, 3, 5, 7, 3, 3, 4, 1, 9, 6, 2, 9, 0, 0, 4, 8, 4, 2, 8, 4, 7, 5, 7, 7, 7, 9, 3, 9, 6, 1, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

From Ferenc Adorjan (fadorjan(AT)freemail.hu): (Start)
Decimal expansion of the representation of the sequence of primes by a single real in (0,1).
Any monotonic integer sequence can be represented by a real number in (0, 1) such a way that in the binary representation of the real, the nth fractional digit is 1 if and only if n is in the sequence.
Examples of the inverse mapping are A092855 and A092857. (End)
Is the prime constant an EL number? See Chow's 1999 article.  Lorenzo Sauras Altuzarra, Oct 05 2020


LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000
Ferenc Adorjan, Binary mapping of monotonic sequences and the Aronson function
Timothy Y. Chow, What is a ClosedForm Number?, The American Mathematical Monthly, Vol. 106, No. 5. (May, 1999), pp. 440448.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
Simon Plouffe, Primes coded in binary to 1000 digits
Eric Weisstein's World of Mathematics, Prime Constant


FORMULA

Prime constant C = Sum_{k>=1} 1/2^p(k), where p(k) is the kth prime.  Alexander Adamchuk, Aug 22 2006
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} A010051(k)/2^k.
Equals Sum_{k>=1} 1/A034785(k).
Equals (1/2) * A119523.
Equals Sum_{k>=1} pi(k)/2^(k+1), where pi(k) = A000720(k). (End)


EXAMPLE

0.414682509851111660... (base 10) = .01101010001010001010001... (base 2).


MAPLE

a := n > ListTools:Reverse(convert(floor(evalf[1000](sum(1/2^ithprime(k), k = 1 .. infinity)*10^(n+1))), base, 10))[n+1]:  Lorenzo Sauras Altuzarra, Oct 05 2020


MATHEMATICA

RealDigits[ FromDigits[ {{Table[ If[ PrimeQ[n], 1, 0], {n, 370}]}, 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Jan 15 2005 *)
RealDigits[Sum[1/2^Prime[k], {k, 1000}], 10, 100][[1]] (* Alexander Adamchuk, Aug 22 2006 *)


PROG

(PARI) { mt(v)= /*Returns the binary mapping of v monotonic sequence as a real in (0, 1)*/ local(a=0.0, p=1, l); l=matsize(v)[2]; for(i=1, l, a+=2^(v[i])); return(a)} \\ Ferenc Adorjan
(PARI) { default(realprecision, 20080); x=0; m=67000; for (n=1, m, if (isprime(n), a=1, a=0); x=2*x+a; ); x=10*x/2^m; for (n=0, 20000, d=floor(x); x=(xd)*10; write("b051006.txt", n, " ", d)); } \\ Harry J. Smith, Jun 15 2009
(PARI) suminf(n=1, .5^prime(n)) \\ Then: digits(%\.1^default(realprecision)) to get seq. of digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results.  M. F. Hasler, Jul 04 2017


CROSSREFS

Cf. A000720, A010051, A034785, A051007, A132800, A092857, A092858, A092859, A092860, A092861, A092862, A092863, A092874, A119523.
Sequence in context: A110361 A193750 A092856 * A072812 A244097 A162956
Adjacent sequences: A051003 A051004 A051005 * A051007 A051008 A051009


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein


STATUS

approved



