The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051006 Prime constant: decimal value of (A010051 interpreted as a binary number). 44
 4, 1, 4, 6, 8, 2, 5, 0, 9, 8, 5, 1, 1, 1, 1, 6, 6, 0, 2, 4, 8, 1, 0, 9, 6, 2, 2, 1, 5, 4, 3, 0, 7, 7, 0, 8, 3, 6, 5, 7, 7, 4, 2, 3, 8, 1, 3, 7, 9, 1, 6, 9, 7, 7, 8, 6, 8, 2, 4, 5, 4, 1, 4, 4, 8, 8, 6, 4, 0, 9, 6, 0, 6, 1, 9, 3, 5, 7, 3, 3, 4, 1, 9, 6, 2, 9, 0, 0, 4, 8, 4, 2, 8, 4, 7, 5, 7, 7, 7, 9, 3, 9, 6, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS From Ferenc Adorjan (fadorjan(AT)freemail.hu): (Start) Decimal expansion of the representation of the sequence of primes by a single real in (0,1). Any monotonic integer sequence can be represented by a real number in (0, 1) such a way that in the binary representation of the real, the n-th fractional digit is 1 if and only if n is in the sequence. Examples of the inverse mapping are A092855 and A092857. (End) Is the prime constant an EL number? See Chow's 1999 article. - Lorenzo Sauras Altuzarra, Oct 05 2020 LINKS Harry J. Smith, Table of n, a(n) for n = 0..20000 Ferenc Adorjan, Binary mapping of monotonic sequences and the Aronson function Timothy Y. Chow, What is a Closed-Form Number?, The American Mathematical Monthly, Vol. 106, No. 5. (May, 1999), pp. 440-448. Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018. Simon Plouffe, Primes coded in binary to 1000 digits Eric Weisstein's World of Mathematics, Prime Constant FORMULA Prime constant C = Sum_{k>=1} 1/2^p(k), where p(k) is the k-th prime. - Alexander Adamchuk, Aug 22 2006 From Amiram Eldar, Aug 11 2020: (Start) Equals Sum_{k>=1} A010051(k)/2^k. Equals Sum_{k>=1} 1/A034785(k). Equals (1/2) * A119523. Equals Sum_{k>=1} pi(k)/2^(k+1), where pi(k) = A000720(k). (End) EXAMPLE 0.414682509851111660... (base 10) = .01101010001010001010001... (base 2). MAPLE a := n -> ListTools:-Reverse(convert(floor(evalf[1000](sum(1/2^ithprime(k), k = 1 .. infinity)*10^(n+1))), base, 10))[n+1]: - Lorenzo Sauras Altuzarra, Oct 05 2020 MATHEMATICA RealDigits[ FromDigits[ {{Table[ If[ PrimeQ[n], 1, 0], {n, 370}]}, 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Jan 15 2005 *) RealDigits[Sum[1/2^Prime[k], {k, 1000}], 10, 100][[1]] (* Alexander Adamchuk, Aug 22 2006 *) PROG (PARI) { mt(v)= /*Returns the binary mapping of v monotonic sequence as a real in (0, 1)*/ local(a=0.0, p=1, l); l=matsize(v)[2]; for(i=1, l, a+=2^(-v[i])); return(a)} \\ Ferenc Adorjan (PARI) { default(realprecision, 20080); x=0; m=67000; for (n=1, m, if (isprime(n), a=1, a=0); x=2*x+a; ); x=10*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b051006.txt", n, " ", d)); } \\ Harry J. Smith, Jun 15 2009 (PARI) suminf(n=1, .5^prime(n)) \\ Then: digits(%\.1^default(realprecision)) to get seq. of digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017 CROSSREFS Cf. A000720, A010051, A034785, A051007, A132800, A092857, A092858, A092859, A092860, A092861, A092862, A092863, A092874, A119523. Sequence in context: A110361 A193750 A092856 * A072812 A244097 A162956 Adjacent sequences:  A051003 A051004 A051005 * A051007 A051008 A051009 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 00:42 EST 2020. Contains 338943 sequences. (Running on oeis4.)