OFFSET
0,2
COMMENTS
Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-3 expansion. - M. F. Hasler, Jul 04 2017.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
FORMULA
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A057901(k).
Equals 2 * Sum_{k>=1} pi(k)/3^(k+1), where pi(k) = A000720(k). (End)
EXAMPLE
0.15272690272572247152817541874425912430342364271463298508628837536732...
MATHEMATICA
RealDigits[Sum[1/3^Prime[k], {k, 100}], 10, 100][[1]] (* Vincenzo Librandi, Jul 05 2017 *)
PROG
(PARI) /* Sum of 1/m^p for primes p */ sumnp(n, m) = { local(s=0, a, j); for(x=1, n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3, 100, print1(eval(a[j])", ") ) }
(PARI) suminf(n=1, 1/3^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Cino Hilliard, Nov 17 2007
EXTENSIONS
Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 04 2017
STATUS
approved