login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132800
Decimal expansion of Sum_{n >= 1} 1/3^prime(n).
7
1, 5, 2, 7, 2, 6, 9, 0, 2, 7, 2, 5, 7, 2, 2, 4, 7, 1, 5, 2, 8, 1, 7, 5, 4, 1, 8, 7, 4, 4, 2, 5, 9, 1, 2, 4, 3, 0, 3, 4, 2, 3, 6, 4, 2, 7, 1, 4, 6, 3, 2, 9, 8, 5, 0, 8, 6, 2, 8, 8, 3, 7, 5, 3, 6, 7, 3, 2, 1, 3, 2, 2, 2, 3, 0, 9, 2, 1, 1, 0, 6, 2, 7, 0, 3, 7, 0, 9, 5, 9, 5, 5, 8, 9, 8, 7, 3, 9
OFFSET
0,2
COMMENTS
Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-3 expansion. - M. F. Hasler, Jul 04 2017.
LINKS
FORMULA
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A057901(k).
Equals 2 * Sum_{k>=1} pi(k)/3^(k+1), where pi(k) = A000720(k). (End)
EXAMPLE
0.15272690272572247152817541874425912430342364271463298508628837536732...
MATHEMATICA
RealDigits[Sum[1/3^Prime[k], {k, 100}], 10, 100][[1]] (* Vincenzo Librandi, Jul 05 2017 *)
PROG
(PARI) /* Sum of 1/m^p for primes p */ sumnp(n, m) = { local(s=0, a, j); for(x=1, n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3, 100, print1(eval(a[j])", ") ) }
(PARI) suminf(n=1, 1/3^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017
CROSSREFS
Cf. A000720, A051006 (analog for base 2), A132797 (analog for base 5), A010051 (characteristic function of the primes), A057901, A132806 (base 4).
Sequence in context: A214969 A372925 A093591 * A348432 A183167 A115321
KEYWORD
cons,nonn
AUTHOR
Cino Hilliard, Nov 17 2007
EXTENSIONS
Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 04 2017
STATUS
approved