login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{n >= 1} 1/3^prime(n).
7

%I #24 Aug 11 2020 09:59:34

%S 1,5,2,7,2,6,9,0,2,7,2,5,7,2,2,4,7,1,5,2,8,1,7,5,4,1,8,7,4,4,2,5,9,1,

%T 2,4,3,0,3,4,2,3,6,4,2,7,1,4,6,3,2,9,8,5,0,8,6,2,8,8,3,7,5,3,6,7,3,2,

%U 1,3,2,2,2,3,0,9,2,1,1,0,6,2,7,0,3,7,0,9,5,9,5,5,8,9,8,7,3,9

%N Decimal expansion of Sum_{n >= 1} 1/3^prime(n).

%C Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-3 expansion. - _M. F. Hasler_, Jul 04 2017.

%H Vincenzo Librandi, <a href="/A132800/b132800.txt">Table of n, a(n) for n = 0..2000</a>

%F From _Amiram Eldar_, Aug 11 2020: (Start)

%F Equals Sum_{k>=1} 1/A057901(k).

%F Equals 2 * Sum_{k>=1} pi(k)/3^(k+1), where pi(k) = A000720(k). (End)

%e 0.15272690272572247152817541874425912430342364271463298508628837536732...

%t RealDigits[Sum[1/3^Prime[k], {k, 100}], 10, 100][[1]] (* _Vincenzo Librandi_, Jul 05 2017 *)

%o (PARI) /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,100, print1(eval(a[j])",") ) }

%o (PARI) suminf(n=1,1/3^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - _M. F. Hasler_, Jul 04 2017

%Y Cf. A000720, A051006 (analog for base 2), A132797 (analog for base 5), A010051 (characteristic function of the primes), A057901, A132806 (base 4).

%K cons,nonn

%O 0,2

%A _Cino Hilliard_, Nov 17 2007

%E Offset corrected _R. J. Mathar_, Jan 26 2009

%E Edited by _M. F. Hasler_, Jul 04 2017