OFFSET
1,1
COMMENTS
The Pear Curve is the third Mandelbrot set lemniscate.
LINKS
Eric Weisstein's World of Mathematics, Pear Curve
EXAMPLE
4.1465267894...
MATHEMATICA
f[x_, y_] = ComplexExpand[#*Conjugate[#] &[c + (c + c^2)^2] /. c -> x + I*y] - 4; sy = Solve[f[x, y] == 0, y]; f2[x_] = y /. sy[[4]]; x2 = 3/10; y2 = f2[x2]; sx = Solve[f[x, y] == 0, x]; g1[y_] = x /. sx[[1]]; g2[y_] = x /. sx[[2]]; ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120]; i1 = ni[-g1[y] - 1, {y, 0, f2[-1]} ]; i2 = ni[f2[x], {x, -1, x2}]; i3 = ni[g2[y] - x2, {y, 0, y2}];
Take[RealDigits[2(i1 + i2 + i3)][[1]], 105]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Aug 03 2011
STATUS
approved