This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193751 Decimal expansion of Pear curve length. 1
 7, 7, 3, 8, 3, 7, 3, 6, 2, 4, 1, 3, 3, 4, 9, 8, 3, 6, 1, 9, 9, 9, 8, 4, 4, 4, 1, 0, 7, 0, 4, 4, 8, 6, 1, 4, 0, 2, 3, 4, 8, 7, 4, 9, 5, 1, 7, 9, 4, 3, 8, 8, 5, 5, 8, 9, 3, 8, 4, 0, 0, 0, 4, 8, 3, 1, 5, 0, 7, 9, 4, 1, 7, 2, 5, 2, 2, 3, 3, 6, 1, 7, 5, 1, 7, 8, 6, 6, 4, 4, 8, 0, 5, 7, 4, 5, 8, 8, 1, 1, 8, 9, 7, 2, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Pear Curve is the third Mandelbrot set lemniscate. LINKS Eric Weisstein's World of Mathematics, Pear Curve EXAMPLE 7.738373624... MATHEMATICA f[x_, y_] = ComplexExpand[#*Conjugate[#] &[c + (c + c^2)^2] /. c -> x + I*y] - 4; sy = Solve[f[x, y] == 0, y]; f2[x_] = y /. sy[[4]]; x2 = 3/10; y2 = f2[x2]; sx = Solve[f[x, y] == 0, x]; g1[y_] = x /. sx[[1]]; g2[y_] = x /. sx[[2]]; sg = Solve[f[g[y], y] == 0 && D[f[g[y], y], y] == 0 , g'[y]][[1]]; dg1[y_] = g'[y] /. sg /. g -> g1; dg2[y_] = g'[y] /. sg /. g -> g2; ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120]; i1 = ni[Sqrt[1 + dg1[y]^2], {y, 0, f2[-1]} ]; i2 = ni[Sqrt[1 + f2'[x]^2], {x, -1, x2}]; i3 = ni[Sqrt[1 + dg2[y]^2], {y, 0, y2}]; Take[RealDigits[2(i1 + i2 + i3)][[1]], 105] CROSSREFS Cf. A193750 (area) Sequence in context: A155959 A063736 A212299 * A290565 A319263 A318386 Adjacent sequences:  A193748 A193749 A193750 * A193752 A193753 A193754 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Aug 03 2011 EXTENSIONS Corrected and extended by Jean-François Alcover, Aug 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 09:06 EST 2019. Contains 330020 sequences. (Running on oeis4.)