login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193748
Number of partitions of n into parts that are squares or triangular numbers (A005214).
3
1, 1, 1, 2, 3, 3, 5, 6, 7, 10, 13, 14, 19, 23, 26, 33, 41, 45, 56, 67, 76, 91, 108, 120, 143, 168, 188, 218, 255, 284, 328, 378, 422, 480, 551, 612, 695, 789, 876, 984, 1115, 1233, 1380, 1549, 1713, 1907, 2135, 2349, 2607, 2902, 3192, 3524, 3911, 4287, 4722
OFFSET
0,4
LINKS
EXAMPLE
a(10) = #{10, 9+1, 6+4, 6+3+1, 6+1+1+1+1, 4+4+1+1, 4+3+3, 4+3+1+1+1, 4+6x1, 3+3+3+1, 3+3+1+1+1+1, 3+7x1, 10x1} = 13;
a(11) = #{10+1, 9+1+1, 6+4+1, 6+3+1+1, 6+1+1+1+1+1, 4+4+3, 4+4+1+1+1, 4+3+1+1+1+1, 4+7x1, 3+3+3+1+1, 3+3+5x1, 3+8x1, 11x1} = 14;
a(12) = #{10+1+1, 9+3, 9+1+1+1, 6+6, 6+4+1+1, 6+3+3, 6+3+1+1+1, 6+6x1, 4+4+4, 4+4+3+1, 4+4+1+1+1+1, 4+3+3+1+1, 4+3+5x1, 4+8x1, 3+3+3+3, 3+3+3+1+1+1, 3+3+6x1, 3+9x1, 12x1} = 19.
PROG
(Haskell)
a193748 = p a005214_list where
p _ 0 = 1
p ks'@(k:ks) m
| m < k = 0
| otherwise = p ks' (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 03 2011
STATUS
approved