The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005214 Triangular numbers together with squares (excluding 0). 13
 1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528, 529, 561, 576, 595, 625, 630, 666, 676 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES D. R. Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995. p. 15. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of Integers and Patterns of Thought Processes, DIMACS Conference on Challenges of Identifying Integer Sequences, Rutgers University, October 10 2014; Part 1, Part 2. Eric Weisstein's World of Mathematics, Square Triangular Number FORMULA From Reinhard Zumkeller, Aug 03 2011: (Start) A010052(a(n)) + A010054(a(n)) > 0. A010052(a(A193714(n))) = 1. A010054(a(A193715(n))) = 1. (End) MAPLE a := proc(n) floor(sqrt(n)): floor(sqrt(n+n)): `if`(n+n = %*% + % or n = %% * %%, n, NULL) end: # Peter Luschny, May 01 2014 MATHEMATICA With[{upto=700}, Module[{maxs=Floor[Sqrt[upto]], maxt=Floor[(Sqrt[8upto+1]- 1)/2]}, Union[Join[Range[maxs]^2, Table[(n(n+1))/2, {n, maxt}]]]]] (* Harvey P. Dale, Sep 17 2011 *) PROG (Haskell) import Data.List.Ordered (union) a005214 n = a005214_list !! (n-1) a005214_list = tail \$ union a000290_list a000217_list -- Reinhard Zumkeller, Feb 15 2015, Aug 03 2011 (PARI) upTo(lim)=vecsort(concat(vector(sqrtint(lim\1), n, n^2), vector(floor(sqrt(2+2*lim)-1/2), n, n*(n+1)/2)), , 8) \\ Charles R Greathouse IV, Aug 04 2011 (PARI) isok(m) = ispolygonal(m, 3) || ispolygonal(m, 4); \\ Michel Marcus, Mar 13 2021 CROSSREFS Cf. A054686. Cf. A001110; union of A000290 and A000217; A117704 (first differences), A193711 (partial sums); A193748, A193749 (partitions into). Cf. A010052, A010054, A193714, A193715. Cf. A241241 (subsequence). Cf. A242401 (complement). Sequence in context: A034706 A245810 A054686 * A268110 A124093 A025061 Adjacent sequences: A005211 A005212 A005213 * A005215 A005216 A005217 KEYWORD nonn,easy AUTHOR Russ Cox, Jun 14 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 15:23 EST 2023. Contains 367680 sequences. (Running on oeis4.)