OFFSET
1,2
FORMULA
Equals Sum_{n>=1} 1/(Fibonacci(n)*Fibonacci(n+1)).
Equals lim_{n->infinity} A277266(n)/n.
Equals 2 * (Sum_{k>=1} 1/(phi^k * F(k))) - 1/phi = 2 * A265290 - A094214, where phi is the golden ratio (A001622) and F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
Equals 3/2 + 10*c*Integral_{x=0..infinity} f(x) dx, where c = sqrt(5)/log(phi) = A002163/A002390, phi = (1+sqrt(5))/2 = A001622, and f(x) = sin(x)/((exp(Pi*x/(2*log(phi)))-1)*(7-2*cos(x))*(3+2*cos(x))). - Gleb Koloskov, Sep 12 2021
EXAMPLE
1/(1*1) + 1/(1*2) + 1/(2*3) + 1/(3*5) + ... = 1 + 1/2 + 1/6 + 1/15 + ... = 1.77387758328513234380...
MATHEMATICA
RealDigits[ Sum[1/(Fibonacci[k]*Fibonacci[k + 1]), {k, 265}], 10, 111][[1]]
PROG
(PARI) suminf(n=1, 1/(fibonacci(n)*fibonacci(n+1))) \\ Michel Marcus, Feb 19 2019
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Bobby Jacobs and Robert G. Wilson v, Aug 06 2017
EXTENSIONS
More terms from Alois P. Heinz, Aug 06 2017
STATUS
approved