login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sum of reciprocal golden rectangle numbers.
11

%I #70 Sep 24 2021 03:11:16

%S 1,7,7,3,8,7,7,5,8,3,2,8,5,1,3,2,3,4,3,8,0,2,3,6,2,7,6,5,6,7,6,9,6,5,

%T 9,2,2,8,3,0,7,2,3,2,3,9,3,5,9,4,3,4,1,1,0,8,3,9,2,2,9,0,4,9,8,6,4,9,

%U 2,2,0,7,5,3,0,3,8,5,1,1,9,4,7,0,3,6,2,4,3,3,3,8,6,0,5,2,6,4,2,6,9,1

%N Decimal expansion of sum of reciprocal golden rectangle numbers.

%C The constant k in A277266 such that A277266(n) ~ k*n.

%F Equals Sum_{n>=1} 1/(Fibonacci(n)*Fibonacci(n+1)).

%F Equals lim_{n->infinity} A277266(n)/n.

%F Equals 2 * (Sum_{k>=1} 1/(phi^k * F(k))) - 1/phi = 2 * A265290 - A094214, where phi is the golden ratio (A001622) and F(k) is the k-th Fibonacci number (A000045). - _Amiram Eldar_, Oct 05 2020

%F Equals 3/2 + 10*c*Integral_{x=0..infinity} f(x) dx, where c = sqrt(5)/log(phi) = A002163/A002390, phi = (1+sqrt(5))/2 = A001622, and f(x) = sin(x)/((exp(Pi*x/(2*log(phi)))-1)*(7-2*cos(x))*(3+2*cos(x))). - _Gleb Koloskov_, Sep 12 2021

%e 1/(1*1) + 1/(1*2) + 1/(2*3) + 1/(3*5) + ... = 1 + 1/2 + 1/6 + 1/15 + ... = 1.77387758328513234380...

%t RealDigits[ Sum[1/(Fibonacci[k]*Fibonacci[k + 1]), {k, 265}], 10, 111][[1]]

%o (PARI) suminf(n=1, 1/(fibonacci(n)*fibonacci(n+1))) \\ _Michel Marcus_, Feb 19 2019

%Y Cf. A000045, A000796, A001622, A001654, A002163, A002390, A079586, A094214, A265290, A277266.

%K cons,nonn

%O 1,2

%A _Bobby Jacobs_ and _Robert G. Wilson v_, Aug 06 2017

%E More terms from _Alois P. Heinz_, Aug 06 2017