login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265290
Decimal expansion of Sum_{n>=1} |phi - c(n)|, where phi is the golden ratio (A001622) and c(n) are the convergents to phi.
4
1, 1, 9, 5, 9, 5, 5, 7, 8, 6, 0, 1, 7, 5, 1, 3, 5, 9, 6, 0, 0, 3, 4, 7, 4, 8, 0, 0, 0, 2, 1, 3, 0, 2, 0, 2, 0, 2, 7, 5, 5, 1, 6, 2, 0, 9, 5, 8, 2, 5, 9, 8, 4, 8, 6, 4, 8, 7, 3, 3, 8, 8, 3, 6, 2, 8, 5, 0, 9, 1, 2, 6, 9, 0, 6, 1, 3, 7, 6, 8, 2, 2, 2, 0, 5, 4
OFFSET
1,3
COMMENTS
Define the deviance of x > 0 by dev(x) = Sum_{n>=1} |x - c(n,x)|, where c(n,x) = n-th convergent to x. The greatest value of dev(x) occurs when x = golden ratio, so that this constant is the maximal deviance.
FORMULA
Equals Sum_{n>=1} 1/(F(2*n-1)*F(2*n)), where F(n) is the n-th Fibonacci number (A000045).
From Amiram Eldar, Oct 05 2020: (Start)
Equals Sum_{k>=1} 1/(phi^k * F(k)).
Equals sqrt(5) * Sum_{k>=1} 1/(phi^(2*k) - (-1)^k) = sqrt(5) * Sum_{k>=1} (-1)^(k+1)/(phi^(2*k) + (-1)^k).
Equals (A290565 + 1/phi)/2. (End)
A rapidly converging series for the constant is sqrt(5)*Sum_{k >= 1} x^(k^2)*(1 + x^(2*k))/(1 - x^(2*k)), where x = (3 - sqrt(5))/2. See A112329. - Peter Bala, Aug 21 2022
EXAMPLE
1.195955786017513596003474800021...
MAPLE
x := (3 - sqrt(5))/2:
evalf(sqrt(5)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..16), 100); # Peter Bala, Aug 21 2022
MATHEMATICA
x = GoldenRatio; z = 600; c = Convergents[x, z];
s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
N[s1 + s2, 200]
RealDigits[s1, 10, 120][[1]] (* A265288 *)
RealDigits[s2, 10, 120][[1]] (* A265289 *)
RealDigits[s1 + s2, 10, 120][[1]] (* A265290, dev(x) *)
d[x_] := If[IntegerQ[1000!*x], Total[Abs[x - Convergents[x]]],
Total[Abs[x - Convergents[x, 30]]]]
Plot[{d[x], 1.195}, {x, 0, 1}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2015
STATUS
approved