OFFSET
0,1
FORMULA
From Peter Bala, Aug 20 2022: (Start)
Constant equals Sum_{n >= 1} 1/((1 + sqrt(2))^n*Pell(n)) = 2*sqrt(2)*Sum_{n >= 1} 1/( (3 + 2*sqrt(2))^n - (-1)^n ), where Pell(n) = A000129(n).
A more rapidly converging series for the constant is 2*sqrt(2)*Sum_{n >= 1} x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), where x = 3 - 2*sqrt(2). See A112329. (End)
EXAMPLE
sum = 0.51717422022067188621996435233866923610552...
MAPLE
x := 3 - 2*sqrt(2):
evalf(2*sqrt(2)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..12), 100); # Peter Bala, Aug 20 2022
MATHEMATICA
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2015
STATUS
approved