login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265289
Decimal expansion of Sum_{n>=1} (c(2*n) - phi), where phi is the golden ratio (A001622) and c = convergents to phi.
3
4, 3, 8, 7, 5, 1, 4, 1, 0, 9, 7, 1, 5, 0, 6, 2, 5, 7, 3, 5, 5, 6, 4, 9, 5, 3, 9, 3, 4, 7, 5, 2, 7, 1, 9, 0, 1, 6, 9, 6, 6, 4, 1, 9, 3, 4, 2, 5, 9, 2, 0, 0, 6, 7, 1, 9, 4, 1, 3, 7, 2, 8, 5, 1, 5, 0, 3, 7, 2, 1, 9, 5, 3, 9, 9, 5, 9, 3, 2, 4, 5, 5, 0, 7, 4, 5
OFFSET
0,1
COMMENTS
Define the upper deviance of x > 0 by dU(x) = Sum_{n>=1} (c(2*n,x) - x), where c(k,x) = k-th convergent to x. The greatest upper deviance occurs when x = golden ratio, so that this constant is the absolute maximal upper deviance.
FORMULA
Equals Sum_{k>=1} 1/(phi^(2*k) * F(2*k)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
Equals sqrt(5)*Sum_{k >= 1} x^(k^2)*(1 + x^k)/(1 - x^k), where x = (7 - 3*sqrt(5))/2. - Peter Bala, Aug 21 2022
EXAMPLE
0.4387514109715062573556495393475271901...
MAPLE
x := (7 - 3*sqrt(5))/2:
evalf(sqrt(5)*add(x^(n^2)*(1 + x^n)/(1 - x^n), n = 1..12), 100); # Peter Bala, Aug 21 2022
MATHEMATICA
x = GoldenRatio; z = 600; c = Convergents[x, z];
s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
N[s1 + s2, 200]
RealDigits[s1, 10, 120][[1]] (* A265288 *)
RealDigits[s2, 10, 120][[1]] (* A265289 *)
RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2015
STATUS
approved