

A119523


Decimal expansion of 2^1 + 2^2 + 2^4 + 2^6 + 2^10 + ..., where the exponents are 1 less than the primes.


5



8, 2, 9, 3, 6, 5, 0, 1, 9, 7, 0, 2, 2, 2, 3, 3, 2, 0, 4, 9, 6, 2, 1, 9, 2, 4, 4, 3, 0, 8, 6, 1, 5, 4, 1, 6, 7, 3, 1, 5, 4, 8, 4, 7, 6, 2, 7, 5, 8, 3, 3, 9, 5, 5, 7, 3, 6, 4, 9, 0, 8, 2, 8, 9, 7, 7, 2, 8, 1, 9, 2, 1, 2, 3, 8, 7, 1, 4, 6, 6, 8, 3, 9, 2, 5, 8, 0, 0, 9, 6, 8, 5, 6, 9, 5, 1, 5, 5, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Decimal expansion of Sum_{ k >= 1} A010051(k)/2^(k1).
The primes have a larger measure than the composites as they dominate the lower integers.
The binary JIS function (as defined in A113829) for this constant (that we may call the van der WaerdenUlam constant W) is given by the first differences of A000720, A000720(n+1)A000720(n)= A010051(n+1)= JIS[W,2].  Artur Jasinski, Jun 02 2008


REFERENCES

S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, 1960, page 54


LINKS

Table of n, a(n) for n=0..99.


FORMULA

Equals 2*A051006 = 1/2 + 1/4 + 1/16 + 1/64 + 1/1024 +1/4096 + 1/65536 + .. (see A061286)
Equals Sum_{k>=1} pi(k)/2^k, where pi(k) = A000720(k).  Amiram Eldar, Aug 11 2020


EXAMPLE

0.829365...


MATHEMATICA

b = 0; Do[k = PrimePi[n + 1]  PrimePi[n]; b = b + k/2^n, {n, 1, 200}]; First[RealDigits[N[b, 200]]] (* Artur Jasinski, Jun 02 2008 *)


PROG

(PARI) s=0; forprime(p=2, 1000, s+=1.>>p); 2*s \\ Charles R Greathouse IV, Apr 05 2012


CROSSREFS

Cf. A000720, A010051, A061286, A113829, A119524 (measure of composites).
Sequence in context: A019865 A198993 A307565 * A181164 A154212 A155035
Adjacent sequences: A119520 A119521 A119522 * A119524 A119525 A119526


KEYWORD

nonn,cons


AUTHOR

Roger L. Bagula, May 27 2006


EXTENSIONS

More terms from Peter Pein (petsie(AT)dordos.net), May 31 2006
Edited by N. J. A. Sloane, Nov 17 2006
Corrected use of PrimePi in the first comment line  R. J. Mathar, Oct 30 2010, Alonso Del Arte, Apr 05 2012


STATUS

approved



