login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119523 Decimal expansion of 2^-1 + 2^-2 + 2^-4 + 2^-6 + 2^-10 + ..., where the exponents are 1 less than the primes. 3

%I

%S 8,2,9,3,6,5,0,1,9,7,0,2,2,2,3,3,2,0,4,9,6,2,1,9,2,4,4,3,0,8,6,1,5,4,

%T 1,6,7,3,1,5,4,8,4,7,6,2,7,5,8,3,3,9,5,5,7,3,6,4,9,0,8,2,8,9,7,7,2,8,

%U 1,9,2,1,2,3,8,7,1,4,6,6,8,3,9,2,5,8,0,0,9,6,8,5,6,9,5,1,5,5,5,9

%N Decimal expansion of 2^-1 + 2^-2 + 2^-4 + 2^-6 + 2^-10 + ..., where the exponents are 1 less than the primes.

%C Decimal expansion of Sum_{ k >= 1} A010051(k)/2^(k-1).

%C The primes have a larger measure than the composites as they dominate the lower integers.

%C The binary JIS function (as defined in A113829) for this constant (that we may call the van der Waerden-Ulam constant W) is given by the first differences of A000720, A000720(n+1)-A000720(n)= A010051(n+1)= JIS[W,2]. - _Artur Jasinski_, Jun 02 2008

%D S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, 1960, page 54

%F Equals 2*A051006 = 1/2 + 1/4 + 1/16 + 1/64 + 1/1024 +1/4096 + 1/65536 + .. (see A061286)

%e 0.829365...

%t b = 0; Do[k = PrimePi[n + 1] - PrimePi[n]; b = b + k/2^n, {n, 1, 200}]; First[RealDigits[N[b, 200]]] (* _Artur Jasinski_, Jun 02 2008 *)

%o (PARI) s=0;forprime(p=2,1000,s+=1.>>p);2*s \\ _Charles R Greathouse IV_, Apr 05 2012

%Y Cf. A000720, A119524 (measure of composites), A010051, A113829.

%K nonn,cons

%O 0,1

%A _Roger L. Bagula_, May 27 2006

%E More terms from Peter Pein (petsie(AT)dordos.net), May 31 2006

%E Edited by _N. J. A. Sloane_, Nov 17 2006

%E Corrected use of PrimePi in the first comment line - _R. J. Mathar_, Oct 30 2010, Alonso Del Arte, Apr 05 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:36 EDT 2020. Contains 335762 sequences. (Running on oeis4.)