login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 2^-1 + 2^-2 + 2^-4 + 2^-6 + 2^-10 + ..., where the exponents are 1 less than the primes.
6

%I #31 Jun 09 2024 22:16:28

%S 8,2,9,3,6,5,0,1,9,7,0,2,2,2,3,3,2,0,4,9,6,2,1,9,2,4,4,3,0,8,6,1,5,4,

%T 1,6,7,3,1,5,4,8,4,7,6,2,7,5,8,3,3,9,5,5,7,3,6,4,9,0,8,2,8,9,7,7,2,8,

%U 1,9,2,1,2,3,8,7,1,4,6,6,8,3,9,2,5,8,0,0,9,6,8,5,6,9,5,1,5,5,5,8

%N Decimal expansion of 2^-1 + 2^-2 + 2^-4 + 2^-6 + 2^-10 + ..., where the exponents are 1 less than the primes.

%C Decimal expansion of Sum_{k >= 1} A010051(k)/2^(k-1).

%C The primes have a larger measure than the composites as they dominate the lower integers.

%C The binary JIS function (as defined in A113829) for this constant (that we may call the van der Waerden-Ulam constant W) is given by the first differences of A000720, A000720(n+1) - A000720(n) = A010051(n+1) = JIS[W,2]. - _Artur Jasinski_, Jun 02 2008

%D S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, 1960, page 54.

%F Equals 2*A051006 = 1/2 + 1/4 + 1/16 + 1/64 + 1/1024 +1/4096 + 1/65536 + ... (see A061286).

%F Equals Sum_{k>=1} pi(k)/2^k, where pi(k) = A000720(k). - _Amiram Eldar_, Aug 11 2020

%F Equals 1 - A119524. - _Antonio Graciá Llorente_, Jan 14 2024

%e 0.829365...

%t b = 0; Do[k = PrimePi[n + 1] - PrimePi[n]; b = b + k/2^n, {n, 1, 200}]; First[RealDigits[N[b, 200]]] (* _Artur Jasinski_, Jun 02 2008 *)

%o (PARI) s=0;forprime(p=2,1000,s+=1.>>p);2*s \\ _Charles R Greathouse IV_, Apr 05 2012

%Y Cf. A000720, A010051, A061286, A113829, A119524 (measure of composites).

%K nonn,cons

%O 0,1

%A _Roger L. Bagula_, May 27 2006

%E More terms from Peter Pein (petsie(AT)dordos.net), May 31 2006

%E Edited by _N. J. A. Sloane_, Nov 17 2006

%E Use of PrimePi in the first comment line corrected by _R. J. Mathar_, Oct 30 2010, _Alonso Del Arte_, Apr 05 2012

%E a(99) corrected by _Sean A. Irvine_, Jun 09 2024