

A198993


Decimal expansion of x>0 satisfying 4*x^22*cos(x)=3.


2



1, 0, 0, 8, 2, 9, 2, 1, 6, 7, 8, 8, 8, 8, 3, 5, 4, 7, 1, 4, 2, 7, 8, 0, 9, 8, 5, 3, 9, 9, 1, 6, 8, 6, 6, 4, 7, 3, 3, 4, 3, 7, 8, 4, 2, 3, 3, 7, 0, 5, 6, 4, 7, 5, 8, 9, 0, 9, 4, 7, 0, 9, 9, 4, 1, 4, 9, 0, 7, 7, 0, 2, 7, 0, 2, 1, 1, 3, 1, 6, 0, 4, 8, 7, 8, 2, 8, 5, 2, 0, 9, 5, 5, 3, 8, 6, 2, 5, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.008292167888835471427809853991686647334378423...


MATHEMATICA

a = 4; b = 2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1, 1.01}, WorkingPrecision > 110]
RealDigits[r] (* A198993 *)


CROSSREFS

Cf. A198755.
Sequence in context: A278261 A296301 A019865 * A307565 A119523 A181164
Adjacent sequences: A198990 A198991 A198992 * A198994 A198995 A198996


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 01 2011


STATUS

approved



