login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198991 Decimal expansion of x>0 satisfying 4*x^2-2*cos(x)=-1. 2
4, 4, 7, 9, 5, 8, 3, 0, 7, 6, 4, 7, 4, 0, 6, 8, 7, 2, 3, 0, 9, 7, 6, 4, 1, 8, 4, 0, 4, 5, 1, 8, 5, 4, 0, 2, 3, 5, 3, 8, 9, 7, 5, 3, 4, 8, 4, 0, 6, 5, 7, 1, 0, 0, 2, 3, 4, 2, 3, 1, 3, 8, 3, 0, 3, 0, 3, 7, 2, 8, 4, 0, 6, 0, 4, 2, 6, 0, 1, 4, 5, 3, 0, 7, 9, 0, 7, 1, 7, 8, 0, 9, 7, 8, 3, 7, 1, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A198755 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

x=0.44795830764740687230976418404518540235389753...

MAPLE

Digits:=100: fsolve(4*x^2-2*cos(x)=-1, x); # Wesley Ivan Hurt, Feb 09 2017

MATHEMATICA

a = 4; b = -2; c = -1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .44, .45}, WorkingPrecision -> 110]

RealDigits[r] (* A198991 *)

PROG

(PARI) solve(x=0, 1, 4*x^2 - 2*cos(x) + 1) \\ Michel Marcus, Feb 09 2017

CROSSREFS

Cf. A198755.

Sequence in context: A046538 A353713 A107432 * A214990 A185670 A011981

Adjacent sequences:  A198988 A198989 A198990 * A198992 A198993 A198994

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 10:32 EDT 2022. Contains 354096 sequences. (Running on oeis4.)