login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371556
Table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that (a + b + c - d)/2 = 2^n - 1 and a = b = 2^n.
2
4, 4, 7, 9, 8, 8, 31, 33, 16, 16, 127, 129, 32, 32, 511, 513, 64, 64, 2047, 2049, 128, 128, 8191, 8193, 256, 256, 32767, 32769, 512, 512, 131071, 131073, 1024, 1024, 524287, 524289, 2048, 2048, 2097151, 2097153, 4096, 4096, 8388607, 8388609, 8192, 8192, 33554431, 33554433, 16384, 16384, 134217727, 134217729
OFFSET
2,1
COMMENTS
A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
LINKS
Miguel-Ángel Pérez García-Ortega, Contando y calculando cuaternas pitagórcias.
Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, 6, 6, 6, 6, -8, -8, -8, -8).
FORMULA
Row n = (a, b, c, d) = (2^n, 2^n, 2^(2n - 1) - 1, 2^(2n - 1) + 1).
EXAMPLE
Table begins:
n=2: 4, 4, 7, 9;
n=3: 8, 8, 31, 33;
n=4: 16, 16, 127, 129;
n=5: 32, 32, 511, 513;
n=6: 64, 64, 2047, 2049;
MATHEMATICA
cuaternas={}; Do[cuaternas=Join[cuaternas, {2^n, 2^n, 2^(2n-1)-1, 2^(2n-1)+1}], {n, 2, 35}]; cuaternas
CROSSREFS
Cf. A371559.
Sequence in context: A353713 A107432 A198991 * A214990 A185670 A011981
KEYWORD
nonn,easy,tabf
STATUS
approved