OFFSET
2,1
COMMENTS
A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
LINKS
Miguel-Ángel Pérez García-Ortega, Contando y calculando cuaternas pitagórcias.
Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, 6, 6, 6, 6, -8, -8, -8, -8).
FORMULA
Row n = (a, b, c, d) = (2^n, 2^n, 2^(2n - 1) - 1, 2^(2n - 1) + 1).
EXAMPLE
Table begins:
n=2: 4, 4, 7, 9;
n=3: 8, 8, 31, 33;
n=4: 16, 16, 127, 129;
n=5: 32, 32, 511, 513;
n=6: 64, 64, 2047, 2049;
MATHEMATICA
cuaternas={}; Do[cuaternas=Join[cuaternas, {2^n, 2^n, 2^(2n-1)-1, 2^(2n-1)+1}], {n, 2, 35}]; cuaternas
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Miguel-Ángel Pérez García-Ortega, Mar 27 2024
STATUS
approved