login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061286
Smallest integer for which the number of divisors is the n-th prime.
34
2, 4, 16, 64, 1024, 4096, 65536, 262144, 4194304, 268435456, 1073741824, 68719476736, 1099511627776, 4398046511104, 70368744177664, 4503599627370496, 288230376151711744, 1152921504606846976
OFFSET
1,1
COMMENTS
Seems to be the same as "Even numbers with prime number of divisors" - Jason Earls, Jul 04 2001
Except for the first term, smallest number == 1 (mod prime(n)) having n divisors (by Fermat's little theorem). - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003
FORMULA
a(n) = 2^(prime(n)-1) = 2^A006093(n).
a(n) = A005179(prime(n)). - R. J. Mathar, Aug 09 2019
Sum_{n>=1} 1/a(n) = A119523. - Amiram Eldar, Aug 11 2020
MATHEMATICA
Table[2^(p-1), {p, Table[Prime[n], {n, 1, 18}]}] (* Geoffrey Critzer, May 26 2013 *)
PROG
(PARI) forstep(n=2, 100000000, 2, x=numdiv(n); if(isprime(x), print(n)))
(PARI) a(n)=2^(prime(n)-1) \\ Charles R Greathouse IV, Apr 08 2012
(Python)
from sympy import isprime, divisor_count as tau
[2] + [2**(2*n) for n in range(1, 33) if isprime(tau(2**(2*n)))] # Karl V. Keller, Jr., Jul 10 2020
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, May 22 2001
STATUS
approved