login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest integer for which the number of divisors is the n-th prime.
34

%I #40 Aug 11 2020 09:52:53

%S 2,4,16,64,1024,4096,65536,262144,4194304,268435456,1073741824,

%T 68719476736,1099511627776,4398046511104,70368744177664,

%U 4503599627370496,288230376151711744,1152921504606846976

%N Smallest integer for which the number of divisors is the n-th prime.

%C Seems to be the same as "Even numbers with prime number of divisors" - _Jason Earls_, Jul 04 2001

%C Except for the first term, smallest number == 1 (mod prime(n)) having n divisors (by Fermat's little theorem). - _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003

%H Karl V. Keller, Jr., <a href="/A061286/b061286.txt">Table of n, a(n) for n = 1..460</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%F a(n) = 2^(prime(n)-1) = 2^A006093(n).

%F a(n) = A005179(prime(n)). - _R. J. Mathar_, Aug 09 2019

%F Sum_{n>=1} 1/a(n) = A119523. - _Amiram Eldar_, Aug 11 2020

%t Table[2^(p-1),{p,Table[Prime[n],{n,1,18}]}] (* _Geoffrey Critzer_, May 26 2013 *)

%o (PARI) forstep(n=2,100000000,2,x=numdiv(n); if(isprime(x),print(n)))

%o (PARI) a(n)=2^(prime(n)-1) \\ _Charles R Greathouse IV_, Apr 08 2012

%o (Python)

%o from sympy import isprime, divisor_count as tau

%o [2] + [2**(2*n) for n in range(1, 33) if isprime(tau(2**(2*n)))] # _Karl V. Keller, Jr._, Jul 10 2020

%Y Cf. A000005, A005179, A003680, A061283, A061286, A006093, A005097, A006254, A119523, A196202.

%K nonn,easy

%O 1,1

%A _Labos Elemer_, May 22 2001