login
A061652
Even superperfect numbers: 2^(p-1) where 2^p-1 is a Mersenne prime (A000668).
63
2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
OFFSET
1,1
COMMENTS
It is conjectured that there are no odd superperfect numbers, in which case this coincides with A019279.
The number of divisors of a(n) is equal to A000043(n). - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is equal to A000668(n), the n-th Mersenne prime. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n). - Omar E. Pol, Apr 25 2008
Indices of hexagonal numbers (A000384) that are also even perfect numbers. [Omar E. Pol, Aug 26 2008]
Except for the first perfect number 6, this sequence is the greatest common divisor of a perfect number (A000396) and its arithmetic derivative (A003415). - Giorgio Balzarotti, Apr 21 2011
If n is in the sequence then n is a solution to the equation phi(sigma(x)) = 2x-2. It seems that there is no other solution to this equation. - Jahangeer Kholdi, Sep 09 2014
The sum of sums of elements of subsets of divisors of a(n), i.e. A229335(a(n)), is a perfect number (A000396). - Jaroslav Krizek, Nov 02 2017
LINKS
G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
Eric Weisstein's World of Mathematics, Superperfect Number
FORMULA
a(n) = 2^(A090748(n)). - Lekraj Beedassy, Dec 07 2007
a(n) = (1 + A000668(n))/2. - Omar E. Pol, Mar 11 2008
a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
MATHEMATICA
2^(Select[Range[512], PrimeQ[2^# - 1] &] - 1) (* Alonso del Arte, Apr 22 2011 *)
2^(MersennePrimeExponent[Range[15]]-1) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
PROG
(PARI) forprime(p=2, 1e3, if(ispseudoprime(2^p-1), print1(2^(p-1)", "))) \\ Charles R Greathouse IV, Mar 14 2012
KEYWORD
nonn,nice
AUTHOR
Jason Earls, Jun 16 2001
STATUS
approved