OFFSET
1,1
COMMENTS
It is conjectured that there are no odd superperfect numbers, in which case this coincides with A019279.
The number of divisors of a(n) is equal to A000043(n). - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is equal to A000668(n), the n-th Mersenne prime. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n). - Omar E. Pol, Apr 25 2008
Indices of hexagonal numbers (A000384) that are also even perfect numbers. [Omar E. Pol, Aug 26 2008]
Except for the first perfect number 6, this sequence is the greatest common divisor of a perfect number (A000396) and its arithmetic derivative (A003415). - Giorgio Balzarotti, Apr 21 2011
If n is in the sequence then n is a solution to the equation phi(sigma(x)) = 2x-2. It seems that there is no other solution to this equation. - Jahangeer Kholdi, Sep 09 2014
The sum of sums of elements of subsets of divisors of a(n), i.e. A229335(a(n)), is a perfect number (A000396). - Jaroslav Krizek, Nov 02 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..18
G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
Eric Weisstein's World of Mathematics, Superperfect Number
FORMULA
a(n) = 2^(A090748(n)). - Lekraj Beedassy, Dec 07 2007
a(n) = (1 + A000668(n))/2. - Omar E. Pol, Mar 11 2008
MATHEMATICA
2^(Select[Range[512], PrimeQ[2^# - 1] &] - 1) (* Alonso del Arte, Apr 22 2011 *)
2^(MersennePrimeExponent[Range[15]]-1) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
PROG
(PARI) forprime(p=2, 1e3, if(ispseudoprime(2^p-1), print1(2^(p-1)", "))) \\ Charles R Greathouse IV, Mar 14 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Jason Earls, Jun 16 2001
STATUS
approved