login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229335 Sum of sums of elements of subsets of divisors of n. 10
1, 6, 8, 28, 12, 96, 16, 120, 52, 144, 24, 896, 28, 192, 192, 496, 36, 1248, 40, 1344, 256, 288, 48, 7680, 124, 336, 320, 1792, 60, 9216, 64, 2016, 384, 432, 384, 23296, 76, 480, 448, 11520, 84, 12288, 88, 2688, 2496, 576, 96, 63488, 228, 2976, 576, 3136, 108 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of nonempty subsets of divisors of n = A100587(n).

LINKS

Jaroslav Krizek, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A000203(n) * A100577(n) = A000203(n) * (A100587(n) + 1) / 2 = A000203(n) * 2^(A000005(n) - 1) = sigma(n) * 2^(tau(n) - 1).

a(2^n)  = (2^(n+1) - 1) * 2^n.

EXAMPLE

For n = 2^2 = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 = (2^3-1) * 2^2 = 7 * 4.

MAPLE

A229335 := proc(n)

    numtheory[sigma](n)*A100577(n) ;

end proc:

seq(A229335(n), n=1..100) ; # R. J. Mathar, Nov 10 2017

MATHEMATICA

Table[Total[Flatten[Subsets[Divisors[n]]]], {n, 100}] (* T. D. Noe, Sep 21 2013 *)

CROSSREFS

Cf. A229336 (product of sums of elements of subsets of divisors of n).

Cf. A229337 (sum of products of elements of subsets of divisors of n).

Cf. A229338 (product of products of elements of subsets of divisors of n).

Sequence in context: A066231 A267477 A237290 * A007829 A000773 A258283

Adjacent sequences:  A229332 A229333 A229334 * A229336 A229337 A229338

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Sep 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 01:38 EST 2020. Contains 332319 sequences. (Running on oeis4.)