OFFSET
0,6
LINKS
Sean A. Irvine, Table of n, a(n) for n = 0..500
E. Bussian, Email to N. J. A. Sloane, Oct. 1994
Index entries for linear recurrences with constant coefficients, signature (2,3,-6,-4,5,5,-2,-2).
FORMULA
From Colin Barker, Feb 03 2018: (Start)
G.f.: 2*x^5*(3 - 2*x - 3*x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x^2 - x^3)).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 4*a(n-4) + 5*a(n-5) + 5*a(n-6) - 2*a(n-7) - 2*a(n-8) for n>7.
(End)
From G. C. Greubel, Mar 11 2020: (Start)
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - A084338(n+2)).
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - b(n+7) - b(n+5)), where b(n) = A000931(n). (End)
MAPLE
m:=35; S:=series(2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2020
MATHEMATICA
b[n_]:= b[n]= If[n==0, 1, If[n<3, 0, b[n-2] +b[n-3]]]; Table[2*(2 +Fibonacci[n+2] -2^Floor[n/2] -p[n+7] -p[n+5]), {n, 0, 35}] (* G. C. Greubel, Mar 11 2020 *)
PROG
(Sage)
def A007829_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)) ).list()
A007829_list(35) # G. C. Greubel, Mar 11 2020
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Eric Bussian [ ebussian(AT)math.gatech.edu ]
STATUS
approved