login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007829
From random walks on complete directed triangle.
1
0, 0, 0, 0, 0, 6, 8, 28, 44, 100, 162, 318, 514, 942, 1518, 2672, 4302, 7380, 11882, 20040, 32276, 53810, 86710, 143396, 231204, 380152, 613286, 1004188, 1620864, 2645928, 4272744, 6959326, 11242518, 18281222, 29542078, 47978666, 77552928, 125836374, 203445784
OFFSET
0,6
FORMULA
From Colin Barker, Feb 03 2018: (Start)
G.f.: 2*x^5*(3 - 2*x - 3*x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x^2 - x^3)).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 4*a(n-4) + 5*a(n-5) + 5*a(n-6) - 2*a(n-7) - 2*a(n-8) for n>7.
(End)
From G. C. Greubel, Mar 11 2020: (Start)
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - A084338(n+2)).
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - b(n+7) - b(n+5)), where b(n) = A000931(n). (End)
MAPLE
m:=35; S:=series(2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2020
MATHEMATICA
b[n_]:= b[n]= If[n==0, 1, If[n<3, 0, b[n-2] +b[n-3]]]; Table[2*(2 +Fibonacci[n+2] -2^Floor[n/2] -p[n+7] -p[n+5]), {n, 0, 35}] (* G. C. Greubel, Mar 11 2020 *)
PROG
(Sage)
def A007829_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)) ).list()
A007829_list(35) # G. C. Greubel, Mar 11 2020
CROSSREFS
Sequence in context: A267477 A237290 A229335 * A345003 A000773 A258283
KEYWORD
nonn,walk
AUTHOR
Eric Bussian [ ebussian(AT)math.gatech.edu ]
STATUS
approved