login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007832
Number of point labeled 5,6-free two-graphs with n nodes.
2
1, 1, 2, 8, 52, 457, 4979, 64591, 972906, 16701834, 322063458, 6894918021, 162316253829, 4168330738093, 115980086558470, 3476156853885992, 111665862911781864, 3827642575341002133, 139457935266705019299, 5382149182666970080019, 219344947692643001216702
OFFSET
1,3
LINKS
P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4.
FORMULA
STIRLING transform of A007831. - Sean A. Irvine, Feb 03 2018
From Vaclav Kotesovec, Nov 16 2021: (Start)
E.g.f.: (3 + exp(2*x) - exp(x)*(4 + LambertW(exp(-x) - 1) * (2 + LambertW(exp(-x) - 1)))) / (2*(exp(x) - 1)).
a(n) ~ (exp(1) - 1)^(3/2) * (-log(1-exp(-1)))^(3/2) * n^(n-2) / (exp(n-1) * (1 - log(exp(1) - 1))^n). (End)
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[(3 + E^(2*x) - E^x*(4 + ProductLog[-1 + E^(-x)] * (2 + ProductLog[-1 + E^(-x)])))/(2*(-1 + E^x)), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 16 2021 *)
PROG
(PARI) seq(n)=my(e=exp(x + O(x^2*x^n))); Vec(serlaplace((3 + e^2 - e*(4 + lambertw(1/e - 1) * (2 + lambertw(1/e - 1)))) / (2*(e - 1)))) \\ Andrew Howroyd, Oct 15 2024
CROSSREFS
Cf. A007831.
Sequence in context: A125787 A358031 A368453 * A111088 A367371 A006351
KEYWORD
nonn
STATUS
approved