login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358031
Expansion of e.g.f. (1 - log(1-x))/(1 + log(1-x) * (1 - log(1-x))).
2
1, 2, 8, 52, 450, 4878, 63474, 963744, 16724016, 326497632, 7082393136, 168995017200, 4399028766192, 124051494462816, 3767315220903072, 122581568808533760, 4254486275273419008, 156890997080103149568, 6125936704495619486976, 252480641031903073955328
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} k! * Fibonacci(k+2) * |Stirling1(n,k)|.
a(n) = A354013(n) + A354018(n).
MAPLE
f:= proc(n) local k; add(k!*combinat:-fibonacci(k+2)*abs(Stirling1(n, k)), k=0..n) end proc:
map(f, [$0..30]); # Robert Israel, Oct 25 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-Log[1-x])/(1+Log[1-x](1-Log[1-x])), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jan 25 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-x))/(1+log(1-x)*(1-log(1-x)))))
(PARI) a(n) = sum(k=0, n, k!*fibonacci(k+2)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2022
STATUS
approved