OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} k! * Fibonacci(k) * |Stirling1(n,k)|.
a(n) ~ n! * (sqrt(5) - 1) / (2 * sqrt(5) * exp((sqrt(5) - 1)/2) * (1 - exp((1 - sqrt(5))/2))^(n+1)). - Vaclav Kotesovec, May 15 2022
MATHEMATICA
Table[Sum[k! * Fibonacci[k] * Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 15 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-x)/(1+log(1-x)-log(1-x)^2))))
(PARI) a(n) = sum(k=0, n, k!*fibonacci(k)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 14 2022
STATUS
approved